1
|
Yokoyama Y, Kameo Y, Sunaga J, Maki K, Adachi T. Chondrocyte hypertrophy in the growth plate promotes stress anisotropy affecting long bone development through chondrocyte column formation. Bone 2024; 182:117055. [PMID: 38412894 DOI: 10.1016/j.bone.2024.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The length of long bones is determined by column formation of proliferative chondrocytes and subsequent chondrocyte hypertrophy in the growth plate during bone development. Despite the importance of mechanical loading in long bone development, the mechanical conditions of the cells within the growth plate, such as the stress field, remain unclear owing to the difficulty in investigating spatiotemporal changes within dynamically growing tissues. In this study, the mechanisms of longitudinal bone growth were investigated from a mechanical perspective through column formation of proliferative chondrocytes within the growth plate before secondary ossification center formation using continuum-based particle models (CbPMs). A one-factor model, which simply describes essential aspects of a biological signaling cascade regulating cell activities within the growth plate, was developed and incorporated into CbPM. Subsequently, the developmental process and maintenance of the growth plate structure and resulting bone morphogenesis were simulated. Thus, stress anisotropy in the proliferative zone that affects bone elongation through chondrocyte column formation was identified and found to be promoted by chondrocyte hypertrophy. These results provide further insights into the mechanical regulation of multicellular dynamics during bone development.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan
| | - Junko Sunaga
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Maki
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Requist MR, Mills MK, Carroll KL, Lenz AL. Quantitative Skeletal Imaging and Image-Based Modeling in Pediatric Orthopaedics. Curr Osteoporos Rep 2024; 22:44-55. [PMID: 38243151 DOI: 10.1007/s11914-023-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE OF REVIEW Musculoskeletal imaging serves a critical role in clinical care and orthopaedic research. Image-based modeling is also gaining traction as a useful tool in understanding skeletal morphology and mechanics. However, there are fewer studies on advanced imaging and modeling in pediatric populations. The purpose of this review is to provide an overview of recent literature on skeletal imaging modalities and modeling techniques with a special emphasis on current and future uses in pediatric research and clinical care. RECENT FINDINGS While many principles of imaging and 3D modeling are relevant across the lifespan, there are special considerations for pediatric musculoskeletal imaging and fewer studies of 3D skeletal modeling in pediatric populations. Improved understanding of bone morphology and growth during childhood in healthy and pathologic patients may provide new insight into the pathophysiology of pediatric-onset skeletal diseases and the biomechanics of bone development. Clinical translation of 3D modeling tools developed in orthopaedic research is limited by the requirement for manual image segmentation and the resources needed for segmentation, modeling, and analysis. This paper highlights the current and future uses of common musculoskeletal imaging modalities and 3D modeling techniques in pediatric orthopaedic clinical care and research.
Collapse
Affiliation(s)
- Melissa R Requist
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Megan K Mills
- Department of Radiology and Imaging Sciences, University of Utah, 30 N Mario Capecchi Dr. 2 South, Salt Lake City, UT, 84112, USA
| | - Kristen L Carroll
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Shriners Hospital for Children, 1275 E Fairfax Rd, Salt Lake City, UT, 84103, USA
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Sadeghian SM, Arthurs OJ, Li X, Lewis CL, Shefelbine SJ. Neonatal Hip Loading in Developmental Dysplasia: Finite Element Simulation of Proximal Femur Growth and Treatment. HSS J 2023; 19:418-427. [PMID: 37937091 PMCID: PMC10626923 DOI: 10.1177/15563316231193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 11/09/2023]
Abstract
Background Abnormal prenatal hip joint loading can lead to compromised hip joint function. Early intervention is crucial for favorable outcomes. Purpose This study investigates the impact of treatment timing (initiation and duration) on cartilage growth and ossification in the proximal femur of infants with developmental dysplasia of the hip, a condition affecting newborns. Methods We used a mechanobiological model to simulate proximal femur growth during treatment durations of 3 months, 6 months, and a late-start treatment. Results The findings indicate that the timing of treatment initiation is crucial, while a longer treatment duration does not contribute to improved morphological development of the hip joint. Conclusions Mechanobiological models of growth can be used to develop treatments and therapies that correct loading conditions. Growing bone is particularly sensitive to loading conditions, and altered loading during growth can affect bone shape and functionality.
Collapse
Affiliation(s)
- S Mahsa Sadeghian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Xinshan Li
- Department of Mechanical Engineering, Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Cara L Lewis
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Sadeghian SM, Lewis CL, Shefelbine SJ. Can pelvic tilt cause cam morphology? A computational model of proximal femur development mechanobiology. J Biomech 2023; 157:111707. [PMID: 37441913 DOI: 10.1016/j.jbiomech.2023.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Cam deformity of the proximal femur is a risk factor for early osteoarthritis. While cam morphology is related to mechanical force at a formative time in skeletal growth, the specific problematic forces contributing to the development of cam morphology remain unknown. Individuals with femoroacetabular impingement syndrome exhibit an increased anterior pelvic tilt during walking, which alters their hip joint forces. This study aims to investigate the influence of altered joint force caused by anterior pelvic tilt on proximal femur epiphyseal growth and the potential association between increased anterior pelvic tilt and the development of cam morphology. A computational model is utilized to simulate the endochondral ossification in the proximal femur and predict cam formation. Cartilage growth and ossification patterns for a gait cycle with and without anterior pelvic tilt were modeled. The simulated growth results indicated an increased alpha angle (53° for typically developing to 68° for anterior pelvic tilt) and aspherical femoral head in the model with anterior pelvic tilt. We conclude that anterior pelvic tilt may be sufficient to cause the formation of the cam morphology. Identifying the critical mechanical conditions that increase the risk of cam deformity could help prevent this condition by adjusting the physical activities before skeletal maturity.
Collapse
Affiliation(s)
- S Mahsa Sadeghian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Cara L Lewis
- Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Hucke L, Holder J, van Drongelen S, Stief F, Gámez AJ, Huß A, Wittek A. Influence of tension-band plates on the mechanical loading of the femoral growth plate during guided growth due to coronal plane deformities. Front Bioeng Biotechnol 2023; 11:1165963. [PMID: 37415789 PMCID: PMC10321528 DOI: 10.3389/fbioe.2023.1165963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: Correction of knee malalignment by guided growth using a tension-band plate is a common therapy to prevent knee osteoarthritis among other things. This approach is based on the Hueter-Volkmann law stating that the length growth of bones is inhibited by compression and stimulated by tension. How the locally varying mechanical loading of the growth plate is influenced by the implant has not yet been investigated. This study combines load cases from the gait cycle with personalized geometry in order to investigate the mechanical influence of the tension-band plates. Methods: Personalized finite element models of four distal femoral epiphyses of three individuals, that had undergone guided growth, were generated. Load cases from the gait cycles and musculoskeletal modelling were simulated with and without implant. Morphological features of the growth plates were obtained from radiographs. 3D geometries were completed using non-individual Magnetic Resonance Images of age-matched individuals. Boundary conditions for the models were obtained from instrumented gait analyses. Results: The stress distribution in the growth plate was heterogenous and depended on the geometry. In the insertion region, the implants locally induced static stress and reduced the cyclic loading and unloading. Both factors that reduce the growth rate. On the contralateral side of the growth plate, increased tension stress was observed, which stimulates growth. Discussion: Personalized finite element models are able to estimate the changes of local static and cyclic loading of the growth plate induced by the implant. In future, this knowledge can help to better control growth modulation and avoid the return of the malalignment after the treatment. However, this requires models that are completely participant-specific in terms of load cases and 3D geometry.
Collapse
Affiliation(s)
- Lucie Hucke
- Peronalized Biomedical Engineering Laboratory, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cádiz, Cádiz, Spain
| | - Jana Holder
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan van Drongelen
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felix Stief
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Antonio J. Gámez
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cádiz, Cádiz, Spain
| | - Armin Huß
- Peronalized Biomedical Engineering Laboratory, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| | - Andreas Wittek
- Peronalized Biomedical Engineering Laboratory, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Post JN, Loerakker S, Merks R, Carlier A. Implementing computational modeling in tissue engineering: where disciplines meet. Tissue Eng Part A 2022; 28:542-554. [PMID: 35345902 DOI: 10.1089/ten.tea.2021.0215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the mathematical and computational sciences have developed novel methodologies and insights that can aid in designing advanced bioreactors, microfluidic set-ups or organ-on-chip devices, in optimizing culture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and examples at experimental scientists with little or no computational modeling experience. We also describe the contribution of computational models in understanding TERM processes and in advancing the TERM field by providing novel insights.
Collapse
Affiliation(s)
- Janine Nicole Post
- University of Twente, 3230, Tissue Regeneration, Enschede, Overijssel, Netherlands;
| | - Sandra Loerakker
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands.,Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Noord-Brabant, Netherlands;
| | - Roeland Merks
- Leiden University, 4496, Institute for Biology Leiden and Mathematical Institute, Leiden, Zuid-Holland, Netherlands;
| | - Aurélie Carlier
- Maastricht University, 5211, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, Netherlands, 6200 MD;
| |
Collapse
|