1
|
Tan TC, Shen Y, Stine LB, Mitchell B, Okada K, McKenney RJ, Ori-McKenney KM. Microtubule-associated protein, MAP1B, encodes functionally distinct polypeptides. J Biol Chem 2024; 300:107792. [PMID: 39305956 PMCID: PMC11530598 DOI: 10.1016/j.jbc.2024.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024] Open
Abstract
Microtubule-associated protein, MAP1B, is crucial for neuronal morphogenesis and disruptions in MAP1B function are correlated with neurodevelopmental disorders. MAP1B encodes a single polypeptide that is processed into discrete proteins, a heavy chain (HC) and a light chain (LC); however, it is unclear if these two chains operate individually or as a complex within the cell. In vivo studies have characterized the contribution of MAP1B HC and LC to microtubule and actin-based processes, but their molecular mechanisms of action are unknown. Using in vitro reconstitution with purified proteins, we dissect the biophysical properties of the HC and LC and uncover distinct binding behaviors and functional roles for these MAPs. Our biochemical assays indicate that MAP1B HC and LC do not form a constitutive complex, supporting the hypothesis that these proteins operate independently within cells. Both HC and LC inhibit the microtubule motors, kinesin-3, kinesin-4, and dynein, and differentially affect the severing activity of spastin. Notably, MAP1B LC binds to actin filaments in vitro and can simultaneously bind and cross-link actin filaments and microtubules, a function not observed for MAP1B HC. Phosphorylation of MAP1B HC by dual-specificity, tyrosine phosphorylation-regulated kinase 1a negatively regulates its actin-binding activity without significantly affecting its microtubule-binding capacity, suggesting a dynamic contribution of MAP1B HC in cytoskeletal organization. Overall, our study provides new insights into the distinct functional properties of MAP1B HC and LC, underscoring their roles in coordinating cytoskeletal networks during neuronal development.
Collapse
Affiliation(s)
- Tracy C Tan
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Lily B Stine
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Barbara Mitchell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA.
| | | |
Collapse
|
2
|
Mi L, Yao R, Guo W, Wang J, Zhang G, Ye X. Concurrent de novo MACF1 mutation and inherited 16p13.11 microduplication in a preterm newborn with hypotonia, joint hyperlaxity and multiple congenital malformations: a case report. BMC Pediatr 2024; 24:528. [PMID: 39152427 PMCID: PMC11328432 DOI: 10.1186/s12887-024-04628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND The MACF1 gene, found on chromosome 1p34.3, is vital for controlling cytoskeleton dynamics, cell movement, growth, and differentiation. It consists of 101 exons, spanning over 270 kb. The 16p13.11 microduplication syndrome results from the duplication of 16p13.11 chromosome copies and is associated with various neurodevelopmental and physiological abnormalities. Both MACF1 and 16p13.11 microduplication have significant impacts on neural development, potentially leading to nerve damage or neurological diseases. This study presents a unique case of a patient simultaneously experiencing a de novo MACF1 mutation and a hereditary 16p13.11 microduplication, which has not been reported previously. CASE PRESENTATION In this report, we describe a Chinese preterm newborn girl exhibiting the typical characteristics of 16.13.11 microduplication syndrome. These features include developmental delay, respiratory issues, feeding problems, muscle weakness, excessive joint movement, and multiple congenital abnormalities. Through whole-exome sequencing, we identified a disease-causing mutation in the MACF1 gene (c.15266T > C / p. Met5089Thr). Additionally, after microarray analysis, we confirmed the presence of a 16p13.11 microduplication (chr16:14,916,289 - 16,315,688), which was inherited from the mother. CONCLUSIONS The patient's clinical presentation, marked by muscle weakness and multiple birth defects, may be attributed to both the de novo MACF1 mutation and the 16p13.11 duplication, which could have further amplified her severe symptoms. Genetic testing for individuals with complex clinical manifestations can offer valuable insights for diagnosis and serve as a reference for genetic counseling for both patients and their families.
Collapse
Affiliation(s)
- Lanlan Mi
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Guo
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guoqing Zhang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuxia Ye
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Peng L, Zhang D, Tu H, Wu D, Xiang S, Yang W, Zhao Y, Yang J. The role of Map1b in regulating osteoblast polarity, proliferation, differentiation and migration. Bone 2024; 181:117038. [PMID: 38316337 DOI: 10.1016/j.bone.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Osteoblast polarity, proliferation, differentiation, and migration are essential for maintaining normal bone structure and function. While the microtubule-associated protein Map1b has been extensively studied in nerve cells, its role in bone cells is less known. We investigated the functional significance of Map1b in mouse bone marrow stromal cells (ST2) and elucidated its relationship and influence on cytoskeletal polarity and Golgi organization. Our results suggest that Map1b, as a microtubule regulatory protein, can also regulate the expression of cyclin PCNA, p-H3(S10) and migration-related protein integrin β1, thereby affecting the proliferation and migration of osteoblasts. The downstream target gene Rgc32 was screened by RNA sequencing. Furthermore, Map1b, as a downstream mediator, regulates the Wnt5a signaling pathway. This study expands our understanding of the involvement of Map1b in bone biology and highlights its crucial role in governing osteoblast polarity, proliferation, and migration, thereby providing a basis for developing novel therapeutic strategies targeting Map1b in orthopedic medicine and promoting precision treatment modalities. Further investigations on the precise mechanisms underlying Map1b's influence on bone cell function and disease progression are needed.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Zhang K, Qiu W, Li H, Li J, Wang P, Chen Z, Lin X, Qian A. MACF1 overexpression in BMSCs alleviates senile osteoporosis in mice through TCF4/miR-335-5p signaling pathway. J Orthop Translat 2023; 39:177-190. [PMID: 36969134 PMCID: PMC10036500 DOI: 10.1016/j.jot.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background The decreased osteogenic differentiation ability of mesenchymal stem cells (MSCs) is one of the important reasons for SOP. Inhibition of Wnt signaling in MSCs is closely related to SOP. Microtubule actin crosslinking factor 1 (MACF1) is an important regulator in Wnt/β-catenin signal transduction. However, whether the specific expression of MACF1 in MSC regulates SOP and its mechanism remains unclear. Methods We established MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-KI) mice, naturally aged male mice, and ovariectomized female mice models. Micro-CT, H&E staining, double calcein labeling, and the three-point bending test were used to explore the effects of MACF1 on bone formation and bone microstructure in the SOP mice model. Bioinformatics analysis, ChIP-PCR, qPCR, and ALP staining were used to explore the effects and mechanisms of MACF1 on MSCs' osteogenic differentiation. Results Microarray analysis revealed that the expression of MACF1 and positive regulators of the Wnt pathway (such as TCF4, β-catenin, Dvl) was decreased in human MSCs (hMSCs) isolated from aged osteoporotic than non-osteoporotic patients. The ALP activity and osteogenesis marker genes (Alp, Runx2, and Bglap) expression in mouse MSCs was downregulated during aging. Furthermore, Micro-CT analysis of the femur from 2-month-old MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-cKI) mice showed no significant trabecular bone changes compared to wild-type littermate controls, whereas 18- and 21-month-old MACF1 c-KI animals displayed increased bone mineral densities (BMD), improved bone microstructure, and increased maximum compression stress. In addition, the ovariectomy (OVX)-induced osteoporosis model of MACF1 c-KI mice had significantly higher trabecular volume and number, and increased bone formation rate than that in control mice. Mechanistically, ChIP-PCR showed that TCF4 could bind to the promoter region of the host gene miR-335-5p. Moreover, MACF1 could regulate the expression of miR-335-5p by TCF4 during the osteogenic differentiation of MSCs. Conclusion These data indicate that MACF1 positively regulates MSCs osteogenesis and bone formation through the TCF4/miR-335-5p signaling pathway in SOP, suggesting that targeting MACF1 may be a novel therapeutic approach against SOP. The translational potential of this article MACF1, an important switch in the Wnt signaling pathway, can alleviate SOP through the TCF4/miR-335-5p signaling pathway in mice model. It might act as a therapeutic target for the treatment of SOP to improve bone function.
Collapse
Affiliation(s)
- Kewen Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wuxia Qiu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pai Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiao Lin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, China
- Corresponding authorSchool of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Corresponding authorSchool of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|