1
|
Yuan Y, Gan C, Wang M, Zou J, Wang Z, Li S, Lv H. Association of serum trimethylamine N-oxide levels and bone mineral density in type 2 diabetes mellitus. Endocrine 2024; 84:958-968. [PMID: 38285411 DOI: 10.1007/s12020-024-03699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE The relationship between trimethylamine N-oxide (TMAO) and bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) is unclear. We explore the relationship between TMAO levels and BMD in T2DM. METHODS This is a cross-sectional study. 254 T2DM patients were enrolled and divided into three groups by TMAO tertiles, and the clinical data were collected. BMD was determined by dual-energy X-ray absorptiometry (DXA) and serum TMAO levels was determined by stable isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). RESULTS Patients in the highest tertile of TMAO levels (TMAO > 6.72 μmol/L) showed relatively low BMD and a higher number of fracture history, osteoporosis (OP) than those in the lower tertiles. Spearman correlation analysis showed that serum TMAO was negatively correlated with BMD of whole body (WB), lumbar spine (LS) and femoral neck (FN), while TMAO was positive correlated with osteoporotic fracture (p < 0.05). Logistic regression models showed that TMAO was an independent influencing factor of fracture history after adjusting for confounders in TMAO > 6.72 μmol/L group. CONCLUSIONS There is a significant linear correlation between TMAO levels and BMD in T2DM patients. Especially in TMAO > 6.72 μmol/L group, TMAO was negatively correlated with WB, LS, and FN BMD, and was positive correlated with osteoporotic fracture in T2DM patients. The findings suggest that elevated TMAO levels are associated with OP and osteoporotic fracture in T2DM patients.
Collapse
Affiliation(s)
- Yue Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Gan
- Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Mengke Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingyi Zou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuyun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Haihong Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Zhao Y, Wang C, Qiu F, Liu J, Xie Y, Lin Z, He J, Chen J. Trimethylamine-N-oxide promotes osteoclast differentiation and oxidative stress by activating NF-κB pathway. Aging (Albany NY) 2024; 16:9251-9263. [PMID: 38809508 PMCID: PMC11164488 DOI: 10.18632/aging.205869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Senile osteoporosis may be caused by an imbalance in intestinal flora and oxidative stress. Trimethylamine-N-oxide (TMAO), a metabolite of dietary choline dependent on gut microbes, has been found to be significantly increased in osteoporosis. However, the role of TMAO in bone loss during osteoporosis remains poorly understood. In this study, we examined the impact of TMAO on osteoclast differentiation and bone resorption in an in vitro setting. METHODS Osteoclast differentiation was induced by incubating RAW 264.7 cells in the presence of Receptor Activator for Nuclear Factor-κB Ligand (RANKL) and macrophage-stimulating factor (M-CSF). Flow cytometry, TRAP staining assay, CCK-8, and ELISA were employed to investigate the impact of TMAO on osteoclast differentiation and bone resorption activity in vitro. For mechanistic exploration, RT-PCR and Western blotting were utilized to assess the activation of the NF-κB pathway. Additionally, protein levels of secreted cytokines and growth factors were determined using suspension array technology. RESULTS Our findings demonstrate that TMAO enhances RANKL and M-CSF-induced osteoclast formation and bone resorption in a dose-dependent manner. Mechanistically, TMAO triggers the upregulation of the NF-κB pathway and osteoclast-related genes (NFATc1, c-Fos, NF-κB p65, Traf6, and Cathepsin K). Furthermore, TMAO markedly elevated the levels of oxidative stress and inflammatory factors. CONCLUSIONS In conclusion, TMAO enhances RANKL and M-CSF-induced osteoclast differentiation and inflammation in RAW 264.7 cells by activating the NF-κB signaling pathway. These findings offer a new rationale for further academic and clinical research on osteoporosis treatment.
Collapse
Affiliation(s)
- Yangyang Zhao
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Chizhen Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Fei Qiu
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Liu
- School of Medicine, Xiamen University, Xiamen, China
| | - Yujuan Xie
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhengkun Lin
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Humanity Rehabilitation Hospital, Xiamen, China
| |
Collapse
|
3
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Zhan W, Deng M, Huang X, Xie D, Gao X, Chen J, Shi Z, Lu J, Lin H, Li P. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J Control Release 2023; 364:644-653. [PMID: 37967723 DOI: 10.1016/j.jconrel.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Osteoporosis (OP) is the most common bone disorder worldwide, especially in postmenopausal women. However, many OP drugs are not suitable for long term use due to major adverse effects. Therefore, there is an urgent need to identify more effective and safe therapeutic drugs. Pueraria lobata has been reported to promote osteoblast growth in bone regeneration, but the exact mechanisms still need further exploration. The current study found that Pueraria lobata-derived exosome-like nanovesicles (PELNs) promoting primary human bone mesenchymal stem cells (hBMSCs) differentiation and mineralization both in vitro and in ovariectomized (OVX)-induced osteoporotic rats. Interestingly, the relative abundance of harmful strains significantly decreased in the intestine of the osteoporosis SD rat model administrated PELNs via the regulation of trimethylamine-N-oxide (TMAO), a metabolite of gut microbiota. Moreover, RNA sequencing revealed that the osteogenic activity of PELNs is revealed to autophagy signaling. In vitro and in vivo experiments also showed that the treatment with PELNs promoted the differentiation and function of hBMSCs by elevating autophagy via the degradation of TMAO. Collectively, PELNs demonstrate promise as a therapeutic approach for OP, with TMAO emerging as a potential target of OP treatment.
Collapse
Affiliation(s)
- Weiqiang Zhan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Mingzhu Deng
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Xinqia Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Dong Xie
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Jiaxian Chen
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Zhen Shi
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Jiaxu Lu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China.
| | - Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China.
| |
Collapse
|
5
|
Olek RA, Samborowska E, Wisniewski P, Wojtkiewicz P, Wochna K, Zielinski J. Effect of a 3-month L-carnitine supplementation and resistance training program on circulating markers and bone mineral density in postmenopausal women: a randomized controlled trial. Nutr Metab (Lond) 2023; 20:32. [PMID: 37533033 PMCID: PMC10394783 DOI: 10.1186/s12986-023-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Higher circulating levels of trimethylamine N-oxide (TMAO), which is a metabolite that can be produced by the gut microbiota from L-carnitine (LC), have been associated with bone mineral density (BMD). Because LC supplementation can improve bone density and microstructural properties in animal models, this study aimed to examine the effects of 12 weeks of LC supplementation on BMD and selected blood markers involved in bone metabolism of postmenopausal women participating in a resistance training (RT) program. METHODS Twenty-seven postmenopausal women, who had not been treated for osteoporosis, with a total T-score above - 3.0 and no diet differences completed 12 weeks of RT. The participants' diets were supplemented with either 1 g of LC-L-tartrate and 3 g of leucine per day (LC group) or 4 g of leucine per day as a placebo (PLA group), in a double-blind fashion. RESULTS After the intervention in the LC group, plasma total carnitine and serum decorin levels were higher than the corresponding preintervention values (p = 0.040 and p = 0.042, respectively). Moreover, plasma TMAO and serum SPARC levels were higher in the LC group than the corresponding postintervention values in the PLA group (p < 0.001 and p = 0.030, respectively). No changes in the BMD were observed after 3 months of the intervention. CONCLUSIONS Twelve weeks of LC supplementation during RT program increased plasma TMAO levels and appeared to affect signaling molecules, as indicated by the increase in the resting SPARC and decorin levels, with no significant modification in the BMD. TRIAL REGISTRATION Retrospectively registered at the ClinicalTrials.gov (NCT05120011).
Collapse
Affiliation(s)
- Robert A Olek
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Krolowej Jadwigi 27/39, Poznan, 61-871, Poland.
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Wisniewski
- Chair and Department of Endocrinology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Pawel Wojtkiewicz
- Endoscopy and Metabolic Disorders, Seventh Navy Hospital, Gdansk, Poland
| | - Krystian Wochna
- Department of Swimming and Water Lifesaving, Poznan University of Physical Education, Poznan, Poland
| | - Jacek Zielinski
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Krolowej Jadwigi 27/39, Poznan, 61-871, Poland
| |
Collapse
|
6
|
Tao J, Yan Z, Huang W, Feng T. Seropositive for hepatitis B and C viruses is associated with the risk of decreased bone mineral density in adults: An analysis of studies from the NHANES database. Front Med (Lausanne) 2023; 10:1120083. [PMID: 37035336 PMCID: PMC10073499 DOI: 10.3389/fmed.2023.1120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Background Some studies had reported that patients with viral hepatitis are at increased risk of reduced bone mineral density and even osteoporosis. However, the interaction between reduced bone mineral density (BMD) and viral hepatitis remains inconclusive. Therefore, our study collected hepatitis test results and bone mineral density from respondents in the NHANES database. The aim of this study was to investigate whether there is an association between hepatitis and a decrease in bone mineral density. Methods The respondents with both hepatitis- and BMD-related indicators from the NHANES database in the United States from 2005-2010, 2013-2014, to 2017-2020 were collected for this study. BMD were compared between respondents who were positive and negative for respondents related to hepatitis B and C. BMD was measured using dual-energy X-ray absorptiometry of the femur and lumbar spine. Finally, multiple regression analysis was performed between hepatitis B surface antigen (HBsAg) and hepatitis C RNA (HCV-RNA) and BMD in the respondents. Results A total of 15,642 respondents were included in the hepatitis B surface antigen-related survey. Of these, 1,217 respondents were positive for hepatitis B surface antigen. A total of 5111 hepatitis C RNA-related responders were included. Hepatitis C RNA-positive had 268 respondents. According to the results of the multiple regression analysis, the femoral BMD was significantly lower in HBsAg (+) respondents compared to HBsAg (-) respondents: -0.018 (-0.026, -0.009) (P < 0.01). Moreover, spinal BMD was significantly lower in HBsAg (+) respondents compared to HBsAg (-) respondents: -0.020 (-0.030, -0.010) (P < 0.01). According to the results of multiple regression analysis for hepatitis C RNA, HCV-RNA (+) respondents had significantly lower BMD compared to HCV-RNA (-) respondents: -0.043 (-0.059, -0.026) (P < 0.01). Conclusion During the analysis of respondents in the NHANES database in the United States, positive tests for hepatitis B surface antigen and hepatitis C RNA were found to be associated with a reduction in BMD. Positive serology for these hepatitis indicators may increase the risk of reduced BMD. Of course, this conclusion still needs to be further confirmed by more large clinical trials.
Collapse
Affiliation(s)
- Jiasheng Tao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zijian Yan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wenmian Huang
- Affiliated Stomatological Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Feng
- Department of Orthopedics, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China
- *Correspondence: Tao Feng
| |
Collapse
|