1
|
Erickson ML, Blackwell TL, Mau T, Cawthon PM, Glynn NW, Qiao Y(S, Cummings SR, Coen PM, Lane NE, Kritchevsky SB, Newman AB, Farsijani S, Esser KA. Age is Associated with Dampened Circadian Patterns of Rest and Activity: The Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.11.23298422. [PMID: 37986744 PMCID: PMC10659513 DOI: 10.1101/2023.11.11.23298422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Aging is associated with declines in circadian functions. The effects of aging on circadian patterns of behavior are insufficiently described. We characterized age-specific features of rest-activity rhythms (RAR) in community dwelling older adults, both overall, and in relation, to sociodemographic characteristics. Methods We analyzed baseline assessments of older adults with wrist-worn free-living wrist-worn actigraphy data (N=820, Age=76.4 yrs, 58.2% women) participating in the Study of Muscle, Mobility and Aging (SOMMA). We applied an extension to the traditional cosine curve to map RAR to activity data, calculating the parameters: rhythmic strength (amplitude); robustness (pseudo-F statistic); and timing of peak activity (acrophase). We also used function principal component analysis to determine 4 components describing underlying patterns of activity accounting for RAR variance. Linear models were used to examine associations between RAR and sociodemographic variables. Results Age was associated with several metrics of dampened RAR; women had stronger and more robust RAR metrics vs. men (all P < 0.05). Total activity (56%) and time of activity (20%) accounted for most the RAR variance. Compared to the latest decile of acrophase, those in the earliest decile had higher average amplitude (P <0.001). Compared to the latest decile of acrophase, those is the earliest and midrange categories had more total activity (P=0.02). RAR was associated with some sociodemographic variables. Conclusions Older age was associated with dampened circadian behavior; and behaviors were sexually dimorphic. We identified a behavioral phenotype characterized by early time-of-day of peak activity, high rhythmic amplitude, and more total activity.
Collapse
Affiliation(s)
| | - Terri L. Blackwell
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Nancy W. Glynn
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yujia (Susanna) Qiao
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL
| | - Nancy E. Lane
- Department of Rheumatology, University of California, Davis
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samaneh Farsijani
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville Florida
| |
Collapse
|
2
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tian Y, Ming J. The role of circadian rhythm in osteoporosis; a review. Front Cell Dev Biol 2022; 10:960456. [PMID: 36238690 PMCID: PMC9550872 DOI: 10.3389/fcell.2022.960456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is characterized by a high incidence rate, with significant effects on people’s lives. The underlying mechanisms are complex, with no treatments for the condition. Recent studies have indicated that melatonin can be used to treat osteoporosis by promoting osteoblast proliferation and differentiation, and inhibiting osteoclast differentiation. Specifically, in vivo mechanisms are initiated by stabilizing biological rhythms in bone tissue. In healthy organisms, these biological rhythms are present in bone tissue, and are characterized by bone formation during the day, and bone resorption at night. When this rhythm is disrupted, osteoporosis occurs. Thus, taking appropriate medication at different times of the day could produce different effects on osteoporosis rhythms. In this review, we characterized these processes, and provided treatments and management strategies for individuals with osteoporosis.
Collapse
|
4
|
Luo B, Zhou X, Tang Q, Yin Y, Feng G, Li S, Chen L. Circadian rhythms affect bone reconstruction by regulating bone energy metabolism. J Transl Med 2021; 19:410. [PMID: 34579752 PMCID: PMC8477514 DOI: 10.1186/s12967-021-03068-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Metabolism is one of the most complex cellular biochemical reactions, providing energy and substances for basic activities such as cell growth and proliferation. Early studies have shown that glucose is an important nutrient in osteoblasts. In addition, amino acid metabolism and fat metabolism also play important roles in bone reconstruction. Mammalian circadian clocks regulate the circadian cycles of various physiological functions. In vertebrates, circadian rhythms are mediated by a set of central clock genes: muscle and brain ARNT like-1 (Bmal1), muscle and brain ARNT like-2 (Bmal2), circadian rhythmic motion output cycle stagnates (Clock), cryptochrome 1 (Cry1), cryptochrome2 (Cry2), period 1 (Per1), period 2 (Per2), period 3 (Per3) and neuronal PAS domain protein 2 (Npas2). Negative feedback loops, controlled at both the transcriptional and posttranslational levels, adjust these clock genes in a diurnal manner. According to the results of studies on circadian transcriptomic studies in several tissues, most rhythmic genes are expressed in a tissue-specific manner and are affected by tissue-specific circadian rhythms. The circadian rhythm regulates several activities, including energy metabolism, feeding time, sleeping, and endocrine and immune functions. It has been reported that the circadian rhythms of mammals are closely related to bone metabolism. In this review, we discuss the regulation of the circadian rhythm/circadian clock gene in osteoblasts/osteoclasts and the energy metabolism of bone, and the relationship between circadian rhythm, bone remodeling, and energy metabolism. We also discuss the therapeutic potential of regulating circadian rhythms or changing energy metabolism on bone development/bone regeneration.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
5
|
Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev 2019; 151-152:245-261. [PMID: 30797955 DOI: 10.1016/j.addr.2019.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Glucocorticoids influence a wide array of metabolic, anti-inflammatory, immunosuppressive, and cognitive signaling processes, playing an important role in homeostasis and preservation of normal organ function. Synthesis is regulated by the hypothalamic-pituitary-adrenal (HPA) axis of which cortisol is the primary glucocorticoid in humans. Synthetic glucocorticoids are important pharmacological agents that augment the anti-inflammatory and immunosuppressive properties of endogenous cortisol and are widely used for the treatment of asthma, Crohn's disease, and rheumatoid arthritis, amongst other chronic conditions. The homeostatic activity of cortisol is disrupted by the administration of synthetic glucocorticoids and so there is interest in developing treatment options that minimize HPA axis disturbance while maintaining the pharmacological effects. Studies suggest that optimizing drug administration time can achieve this goal. The present review provides an overview of endogenous glucocorticoid activity and recent advances in treatment options that have further improved patient safety and efficacy with an emphasis on chronopharmacology.
Collapse
|
6
|
Staab JS, Smith TJ, Wilson M, Montain SJ, Gaffney-Stomberg E. Bone turnover is altered during 72 h of sleep restriction: a controlled laboratory study. Endocrine 2019; 65:192-199. [PMID: 31028666 DOI: 10.1007/s12020-019-01937-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE The objective of the study was to evaluate how controlled, short-term sleep restriction (SR; 72 h) alters markers of bone formation and resorption and urinary calcium (Ca) output. METHODS Ten healthy, sleep-adequate, male soldiers were housed in the research facility one day prior to and for the duration of SR. Diet was controlled to provide adequate energy balance and macronutrient distribution, meeting the recommended dietary allowance (RDA) for Ca. Subjects engaged in light activities to maintain wakefulness and were allowed 2 h of sleep per night (0430-0630 hours). Blood samples were collected each morning at 0 h (baseline) and 24, 48, and 72 h of SR. Serum was assayed for parathyroid hormone (PTH), bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase (TRAP), and C-terminal telopeptide of type I collagen (CTX). Urine was collected in 24 h increments during SR for measurement of Ca and creatinine (Cr). RESULTS BAP was reduced at 24 h (P= 0.015) and resorption markers TRAP and CTX were increased after 48 and 72 h of SR compared to baseline (P < 0.05). The ratio of BAP:TRAP was significantly lower (P= 0.017) at 48 and 72 h of SR. In contrast, total 24 h urinary Ca and Ca/Cr excretion were unchanged. CONCLUSIONS Markers of bone formation and resorption are uncoupled in response to as little as 48 h of SR even when Ca intake is at the RDA. Sleep deprivation may be a risk factor for reduced bone health due to perturbations in bone turnover.
Collapse
Affiliation(s)
- Jeffery S Staab
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA.
| | - Tracey J Smith
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Marques Wilson
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Scott J Montain
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Erin Gaffney-Stomberg
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
7
|
Tsang K, Liu H, Yang Y, Charles JF, Ermann J. Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function. Bone 2019; 121:172-180. [PMID: 30659979 PMCID: PMC6699618 DOI: 10.1016/j.bone.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/24/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Serum bone turnover markers show diurnal variation in humans, suggesting that circadian rhythms contribute to normal bone physiology. This conclusion is corroborated by bone phenotypes in mice with genetic disruption of the circadian molecular clock mechanism, for instance via deletion of the transcription factor Brain and Muscle Arntl-like 1 (Bmal1). To dissect the contribution of circadian molecular clocks in individual bone cell types, we generated mice with conditional deletion of Bmal1 in osteoclasts (Ctsk-cre) and in mesenchymal cells of the limbs (Prx1-cre). We report that deletion of Bmal1 in osteoclasts had no effect on trabecular or cortical bone parameters in vivo or on osteoclast differentiation in vitro. In contrast, Bmal1f/f.Prx1-cre mice had significantly less trabecular and cortical bone than Bmal1f/f littermate controls, recapitulating the bone phenotype of Bmal1 germline deficient mice. The number of osteoblast precursors in the bone marrow of Bmal1f/f.Prx1-cre mice was similar to wild-type controls, while the in vitro differentiation capacity of Bmal1-deficient osteoblast precursors, measured as induction of alkaline phosphatase activity, was significantly lower. Despite this, serum procollagen type 1 N-terminal propeptide (P1NP), a measure of bone formation in vivo, was higher in Bmal1f/f.Prx1-cre mice than in Bmal1f/f mice. Consistent with a high bone turnover state in the mutant mice, the bone resorption marker serum C-terminal telopeptides of Type I collagen (CTX-I) was also elevated, and Bmal1f/f.Prx1-cre mice had a higher number of tartrate resistant acid phosphatase (TRAP) positive osteoclasts than Bmal1f/f controls. These results demonstrate that adult bone mass in mice is controlled by the intrinsic circadian molecular clock in mesenchymal cells but not osteoclasts. The effect of the mesenchymal cell clock on bone turnover appears to involve osteoblast-osteoclast cross-talk.
Collapse
Affiliation(s)
- Kelly Tsang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Haoming Liu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yen Yang
- Division of Rheumatology, University of Massachusetts, Worcester, MA 01655, USA.
| | - Julia F Charles
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Joerg Ermann
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Vitale JA, Banfi G, Sias M, La Torre A. Athletes' rest-activity circadian rhythm differs in accordance with the sport discipline. Chronobiol Int 2019; 36:578-586. [PMID: 30760036 DOI: 10.1080/07420528.2019.1569673] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The correct expression of circadian rhythmicity is crucial for the body homeostasis. The rest-activity circadian rhythms (RARs) are involved in the control of the sleep-wake cycle and altered RARs could lead to a compromised health status. Many studies focused on examining sleep behavior and circadian rhythms in physically active subjects or athletes but, unexpectedly, no data on RARs are available. Therefore, we studied the existence of the RAR in athletes and the possible difference in RAR's characteristics among sport disciplines. The study had a prospective observational design and RARs were recorded for five consecutive training days through actigraphy (Actiwatch 2 actigraph; Philips Respironics, OR, USA) in 43 athletes (mean age: 25.6 ± 3.2 years). Athletes competed in three different disciplines and had different training schedules and competition levels: professional triathletes (N = 10; 6 females and 4 males) had 2 morning (08:30-12:00) and 1 afternoon (15:00-17:00) training sessions, professional volleyball players (N = 19; 12 females and 7 males) used to train once in the morning (09:00-11:30) and once in the afternoon (15:00-18:00), and non-professional soccer players (N = 14; all males) trained always late in the evening (20:30-22:30). To determine the existence of RARs, the activity counts (A.C.) data were analyzed using the single and the population mean cosinor method; a one-way analysis of variance (ANOVA) followed by the Tukey-Kramer post-hoc test was used for the comparison of RAR characteristics among soccer, volleyball and triathlon athletes. Partial eta squared (ήp2) was used to determine the magnitude of the effect for significant outcomes (α = 0.05) in ANOVA. The presence of a significant RAR both for each of the 43 athletes (p < 0.001) and for the three categories of athletes (p < 0.001) was observed. RARs differed among sport disciplines: the Midline Estimating Statistic of Rhythm (MESOR) was significantly higher in triathletes (mean: 347 A.C. with 95% Confidence Interval [CI]: 314-379) compared to both volleyball (mean: 188 A.C. with 95% CI: 173-203; p < 0.001) and soccer players (mean: 289 A.C. with 95% CI: 267-312; p < 0.01) with ήp2 = 0.72. Amplitude (A) values showed the same significant trend of MESOR data (ANOVA: p < 0.001; ήp2 = 0.65) while the acrophase (Φ) occurred at 18:28 for soccer players, significantly later than triathlon (15:20 h; p < 0.001) and volleyball players (16:24 h; p < 0.001) (ANOVA: p < 0.001; ήp2 = 0.84). The higher training duration and intensity reached by triathlon athletes in the morning sessions caused a phase advance of their RAR's acrophase Φ and higher MESOR and A amplitude compared to volleyball players and triathletes. Therefore, different sport disciplines require different training schedules, training loads and intensities that translate into different RARs. Strength coaches and medical staff of professional teams should strongly consider actigraphy as a practical and powerful tool to monitor RARs, sleep behavior, and the activity levels of their athletes; highlighting potential circadian disruptions through actigraphy could be helpful to prevent musculoskeletal injuries.
Collapse
Affiliation(s)
| | - Giuseppe Banfi
- a IRCCS Istituto Ortopedico Galeazzi , Milan , Italy.,b Vita-Salute San Raffaele University , Milan , Italy
| | - Marco Sias
- c Department of Biomedical Sciences for Health , University of Milan , Milan , Italy
| | - Antonio La Torre
- a IRCCS Istituto Ortopedico Galeazzi , Milan , Italy.,c Department of Biomedical Sciences for Health , University of Milan , Milan , Italy
| |
Collapse
|
9
|
Insights into the Role of Circadian Rhythms in Bone Metabolism: A Promising Intervention Target? BIOMED RESEARCH INTERNATIONAL 2018; 2018:9156478. [PMID: 30363685 PMCID: PMC6180976 DOI: 10.1155/2018/9156478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/09/2018] [Indexed: 11/18/2022]
Abstract
Numerous physiological processes of mammals, including bone metabolism, are regulated by the circadian clock system, which consists of a central regulator, the suprachiasmatic nucleus (SCN), and the peripheral oscillators of the BMAL1/CLOCK-PERs/CRYs system. Various bone turnover markers and bone metabolism-regulating hormones such as melatonin and parathyroid hormone (PTH) display diurnal rhythmicity. According to previous research, disruption of the circadian clock due to shift work, sleep restriction, or clock gene knockout is associated with osteoporosis or other abnormal bone metabolism, showing the importance of the circadian clock system for maintaining homeostasis of bone metabolism. Moreover, common causes of osteoporosis, including postmenopausal status and aging, are associated with changes in the circadian clock. In our previous research, we found that agonism of the circadian regulators REV-ERBs inhibits osteoclast differentiation and ameliorates ovariectomy-induced bone loss in mice, suggesting that clock genes may be promising intervention targets for abnormal bone metabolism. Moreover, osteoporosis interventions at different time points can provide varying degrees of bone protection, showing the importance of accounting for circadian rhythms for optimal curative effects in clinical treatment of osteoporosis. In this review, we summarize current knowledge about circadian rhythms and bone metabolism.
Collapse
|