1
|
Jansen MP, Hodgins D, Mastbergen SC, Kloppenburg M, Blanco FJ, Haugen IK, Berenbaum F, Eckstein F, Roemer FW, Wirth W. Can gait patterns be explained by joint structure in people with and without radiographic knee osteoarthritis? Data from the IMI-APPROACH cohort. Skeletal Radiol 2024; 53:2409-2416. [PMID: 38536417 PMCID: PMC11410921 DOI: 10.1007/s00256-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To determine the association between joint structure and gait in patients with knee osteoarthritis (OA). METHODS IMI-APPROACH recruited 297 clinical knee OA patients. Gait data was collected (GaitSmart®) and OA-related joint measures determined from knee radiographs (KIDA) and MRIs (qMRI/MOAKS). Patients were divided into those with/without radiographic OA (ROA). Principal component analyses (PCA) were performed on gait parameters; linear regression models were used to evaluate whether image-based structural and demographic parameters were associated with gait principal components. RESULTS Two hundred seventy-one patients (age median 68.0, BMI 27.0, 77% female) could be analyzed; 149 (55%) had ROA. PCA identified two components: upper leg (primarily walking speed, stride duration, hip range of motion [ROM], thigh ROM) and lower leg (calf ROM, knee ROM in swing and stance phases). Increased age, BMI, and radiographic subchondral bone density (sclerosis), decreased radiographic varus angle deviation, and female sex were statistically significantly associated with worse lower leg gait (i.e. reduced ROM) in patients without ROA (R2 = 0.24); in ROA patients, increased BMI, radiographic osteophytes, MRI meniscal extrusion and female sex showed significantly worse lower leg gait (R2 = 0.18). Higher BMI was significantly associated with reduced upper leg function for non-ROA patients (R2 = 0.05); ROA patients with male sex, higher BMI and less MRI synovitis showed significantly worse upper leg gait (R2 = 0.12). CONCLUSION Structural OA pathology was significantly associated with gait in patients with clinical knee OA, though BMI may be more important. While associations were not strong, these results provide a significant association between OA symptoms (gait) and joint structure.
Collapse
Affiliation(s)
- M P Jansen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, HP G02.228 Heidelberglaan, 100 3584, CX, Utrecht, The Netherlands.
| | - D Hodgins
- Dynamic Metrics Limited, Codicote, UK
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, HP G02.228 Heidelberglaan, 100 3584, CX, Utrecht, The Netherlands
| | - M Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - F J Blanco
- Departamento de Fisioterapia Y Medicina, Grupo de Investigación de Reumatología (GIR), INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS. Centro de Investigación CICA, Universidad de A Coruña, A Coruña, Spain. Servicio de Reumatologia, INIBIC- Universidade de A Coruña, A Coruña, Spain
| | - I K Haugen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - F Berenbaum
- Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
- INSERM, Sorbonne University, Paris, France
| | - F Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - F W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - W Wirth
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| |
Collapse
|
2
|
Reinhard J, Oláh T, Laschke MW, Goebel LKH, Schmitt G, Speicher-Mentges S, Menger MD, Cucchiarini M, Pape D, Madry H. Modulation of early osteoarthritis by tibiofemoral re-alignment in sheep. Osteoarthritis Cartilage 2024; 32:690-701. [PMID: 38442768 DOI: 10.1016/j.joca.2024.02.892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.
Collapse
Affiliation(s)
- Jan Reinhard
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg, Germany.
| | - Lars K H Goebel
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| | | | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg, Germany.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Dietrich Pape
- Cartilage Net of the Greater Region, 66421 Homburg, Germany; Clinique d'Eich, Centre Hospitalier de Luxembourg, Eich, 1460 Luxembourg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| |
Collapse
|
3
|
Michaelis JC, Oláh T, Schrenker S, Cucchiarini M, Madry H. A high‐resolution cross‐species comparative analysis of the subchondral bone provides insight into critical topographical patterns of the osteochondral unit. Clin Transl Med 2022; 12:e745. [PMID: 35220683 PMCID: PMC8882244 DOI: 10.1002/ctm2.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Tamás Oláh
- Center of Experimental Orthopaedics Saarland University Homburg Germany
- Cartilage Net of the Greater Region Homburg Germany
| | - Steffen Schrenker
- Center of Experimental Orthopaedics Saarland University Homburg Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics Saarland University Homburg Germany
- Cartilage Net of the Greater Region Homburg Germany
| | - Henning Madry
- Center of Experimental Orthopaedics Saarland University Homburg Germany
- Cartilage Net of the Greater Region Homburg Germany
| |
Collapse
|