1
|
Roux JP, Duboeuf F, Sornay-Rendu E, Rinaudo L, Ulivieri FM, Wegrzyn J, Chapurlat R. The relationship between bone strain index, bone mass, microarchitecture and mechanical behavior in human vertebrae: an ex vivo study. Osteoporos Int 2024; 35:1069-1075. [PMID: 38520505 DOI: 10.1007/s00198-024-07066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/25/2024]
Abstract
The aim of this study was to determine whether the Bone Strain Index (BSI), a recent DXA-based bone index, is related to bone mechanical behavior, microarchitecture and finally, to determine whether BSI improves the prediction of bone strength and the predictive role of BMD in clinical practice. PURPOSE Bone Strain Index (BSI) is a new DXA-based bone index that represents the finite element analysis of the bone deformation under load. The current study aimed to assess whether the BSI is associated with 3D microarchitecture and the mechanical behavior of human lumbar vertebrae. METHODS Lumbar vertebrae (L3) were harvested fresh from 31 human donors. The anteroposterior BMC (g) and aBMD (g/cm2) of the vertebral body were measured using DXA, and then the BSI was automatically derived. The trabecular bone volume (Tb.BV/TV), trabecular thickness (Tb.Th), degree of anisotropy (DA), and structure model index (SMI) were measured using µCT with a 35-µm isotropic voxel size. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies under displacement control to assess failure load and stiffness. RESULTS The BSI was significantly correlated with failure load and stiffness (r = -0.60 and -0.59; p < 0.0001), aBMD and BMC (r = -0.93 and -0.86; p < 0.0001); Tb.BV/TV and SMI (r = -0.58 and 0.51; p = 0.001 and 0.004 respectively). After adjustment for aBMD, the association between BSI and stiffness, BSI and SMI remained significant (r = -0.51; p = 0.004 and r = -0.39; p = 0.03 respectively, partial correlations) and the relation between BSI and failure load was close to significance (r = -0.35; p = 0.06). CONCLUSION The BSI was significantly correlated with the microarchitecture and mechanical behavior of L3 vertebrae, and these associations remained statistically significant regardless of aBMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Wegrzyn
- Univ Lyon, INSERM, UMR 1033, 69008, Lyon, France
- Department of Orthopedic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
2
|
Xiong Z, Rouquier L, Chappard C, Bachy M, Huang X, Potier E, Bensidhoum M, Hoc T. A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093349. [PMID: 37176232 PMCID: PMC10179528 DOI: 10.3390/ma16093349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (εz) and strain energy density (We). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.
Collapse
Affiliation(s)
- Zhuang Xiong
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Léa Rouquier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | | | - Manon Bachy
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
- Department of Pediatric Orthopedic Surgery, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 75012 Paris, France
| | - Xingrong Huang
- Laboratory of Complex Systems, Ecole Centrale de Pékin, Beihang University, Beijing 100191, China
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Thierry Hoc
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
- Mechanical Department, MSGMGC, Ecole Centrale de Lyon, 69134 Ecully, France
| |
Collapse
|
3
|
Koepke LG, von Kroge S, Heuer A, Kammal AL, Ondruschka B, Rolvien T, Viezens L. Analysis of Three-Dimensional Bone Microarchitecture of the Axis Exposes Pronounced Regional Heterogeneity Associated with Clinical Fracture Patterns. Calcif Tissue Int 2023; 112:563-572. [PMID: 36826480 PMCID: PMC10106346 DOI: 10.1007/s00223-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
The odontoid process (dens) of the second cervical vertebra (axis) is prone to fracture. While the importance of its skeletal integrity has been previously noted, representative three-dimensional microarchitecture analyses in humans are not available. This study aimed to determine the bone microarchitecture of the axis using high-resolution quantitative computed tomography (HR-pQCT) and to derive clinical implications for the occurrence and treatment of axis fractures. For initial clinical reference, the apparent density of the axis was determined based on clinical computed tomography (CT) images in patients without and with fractures of the axis. Subsequently, 28 human axes (female 50%) obtained at autopsy were analyzed by HR-pQCT. Analyses were performed in three different regions corresponding to zones I (tip of dens), II (base of dens), and III (corpus axis) of the Anderson and D'Alonzo classification. Lower apparent densities based on clinical CT data were detected in zone II and III compared to zone I in both the group without and with fracture. In the autopsy specimens, cortical thickness and bone volume fraction decreased continuously from zone I to zone III. Trabecular and cortical tissue mineral density was lowest in zone III, with no differences between zones I and II. In conclusion, our clinical and high-resolution ex vivo imaging data highlight a marked regional heterogeneity of bone microarchitecture, with poor cortical and trabecular properties near the dens base. These results may partly explain why zones II and III are at high risk of fracture and osteosynthesis failure.
Collapse
Affiliation(s)
- Leon-Gordian Koepke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Heuer
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Lena Kammal
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Viezens
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
A Damage Model to Trabecular Bone and Similar Materials: Residual Resource, Effective Elasticity Modulus, and Effective Stress under Uniaxial Compression. Symmetry (Basel) 2021. [DOI: 10.3390/sym13061051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Experimental research of bone strength remains costly and limited for ethical and technical reasons. Therefore, to predict the mechanical state of bone tissue, as well as similar materials, it is desirable to use computer technology and mathematical modeling. Yet, bone tissue as a bio-mechanical object with a hierarchical structure is difficult to analyze for strength and rigidity; therefore, empirical models are often used, the disadvantage of which is their limited application scope. The use of new analytical solutions overcomes the limitations of empirical models and significantly improves the way engineering problems are solved. Aim of the paper: the development of analytical solutions for computer models of the mechanical state of bone and similar materials. Object of research: a model of trabecular bone tissue as a quasi-brittle material under uniaxial compression (or tension). The new ideas of the fracture mechanics, as well as the methods of mathematical modeling and the biomechanics of bone tissues were used in the work. Compression and tension are considered as asymmetric mechanical states of the material. Results: a new nonlinear function that simulates both tension and compression is justified, analytical solutions for determining the effective and apparent elastic modulus are developed, the residual resource function and the damage function are justified, and the dependences of the initial and effective stresses on strain are obtained. Using the energy criterion, it is proven that the effective stress continuously increases both before and after the extremum point on the load-displacement plot. It is noted that the destruction of bone material is more likely at the inflection point of the load-displacement curve. The model adequacy is explained by the use of the energy criterion of material degradation. The results are consistent with the experimental data available in the literature.
Collapse
|