1
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
2
|
Jia S, Liu W, Zhang M, Wang L, Ren C, Feng C, Zhang T, Lv H, Hou Z, Zou W, Zhang Y, Tong W, Wang J, Chen W. Insufficient Mechanical Loading Downregulates Piezo1 in Chondrocytes and Impairs Fracture Healing Through ApoE-Induced Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400502. [PMID: 39418070 DOI: 10.1002/advs.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/10/2024] [Indexed: 10/19/2024]
Abstract
Insufficient mechanical loading impairs fracture healing; however, the underlying mechanisms remain unclear. Increasing evidence indicates that Piezo1 plays an important role in fracture healing, although the effect of Piezo1 on the endochondral ossification of chondrocytes has been overlooked. This study reports that mechanical unloading down-regulates the expression of Piezo1 in chondrocytes and leads to fracture nonunion. Single-cell sequencing of calluses revealed that specific deletion of Piezo1 in chondrocytes upregulated the expression of apolipoprotein E (ApoE) in hypertrophic chondrocytes, resulting in delayed cartilage-to-bone transition due to enhanced chondrocyte senescence. Based on these results, an injectable and thermosensitive hydrogel is developed, which released an ApoE antagonist in situ at the fracture site. This hydrogel effectively attenuated chondrocyte senescence and, thus, promoted cartilage-to-bone transition as well as the fracture healing process. Overall, this data provide a new perspective on the activity of chondrocytes in fracture healing and a new direction for the treatment of fracture nonunion caused by insufficient mechanical loading.
Collapse
Affiliation(s)
- Siming Jia
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
- Hebei Medical University Clinical Medicine Postdoctoral Station (Hebei Medical University Third Hospital), Shijiazhuang, Hebei, 050051, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mo Zhang
- Hebei Medical University Clinical Medicine Postdoctoral Station (Hebei Medical University Third Hospital), Shijiazhuang, Hebei, 050051, China
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lijun Wang
- Hainan Institute of Regenerative Orthopedics and Sports Medicine, Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Chen Feng
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Tao Zhang
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Weiguo Zou
- Hainan Institute of Regenerative Orthopedics and Sports Medicine, Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Wei Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Juan Wang
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Wei Chen
- Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| |
Collapse
|
3
|
Kaminogo K, Yamaguchi S, Chen H, Yagita H, Toyama N, Urata Y, Hibi H. Preventive Effects of Dental Pulp Stem Cell-conditioned Media on Anti-RANKL Antibody-Related Osteonecrosis of the Jaw. Calcif Tissue Int 2024; 115:185-195. [PMID: 38809297 PMCID: PMC11246278 DOI: 10.1007/s00223-024-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Medication-related osteonecrosis of the jaw is a serious disease occurring in patients with cancer and osteoporosis, who are undergoing treatment with antiresorptive agents (ARAs) such as bisphosphonate (BP) or denosumab, an antibody targeting receptor activator of NF-κB ligand. Recently, stem cell-based therapy has been shown to be effective in preventing the development of bisphosphonate-related osteonecrosis of the jaw. However, studies on denosumab-related osteonecrosis of the jaw (DRONJ) remain limited. Here, the efficacy of treatment with dental pulp stem cell conditioned media (DPSC-CM) in preventing DRONJ in a murine model was evaluated. Local administration of DPSC-CM into the extraction socket of a mouse with DRONJ decreased the number of empty osteocyte lacunae and the prevalence of ONJ. In tissues surrounding the extraction sockets in the DPSC-CM-treated group, the expression of inflammatory cytokines was attenuated and that of osteogenesis-related molecules was enhanced compared to that in the control group. Further, the expression of Wnt signaling molecules, which had been suppressed, was improved. These findings collectively suggest that DPSC-CM prevents ONJ development in a murine DRONJ model.
Collapse
Affiliation(s)
- Kento Kaminogo
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hui Chen
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Oral and Maxillofacial Surgery, Iwata City Hospital, Iwata, Japan
| | - Yusuke Urata
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
4
|
Wang J, Lin J, Song X, Wang M, Chen Y, Luo N, Wu X. Differential effects of clopidogrel and/or aspirin on the healing of tooth extraction wound bone tissue. Front Physiol 2024; 15:1387633. [PMID: 39086935 PMCID: PMC11289322 DOI: 10.3389/fphys.2024.1387633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction A multitude of variables influence the healing of tooth extraction wounds, and delayed or non-healing extraction wounds might complicate later prosthodontic therapy. In this research, we analyzed the effects of systemic clopidogrel and aspirin alone or in combination on the healing of tooth extraction wounds in mice in order to provide experimental evidence for the healing of extraction wounds in patients who are clinically treated with the two medicines. Methods 7-week-old ICR mice were randomly divided into four groups: control group (CON), clopidogrel group (CLOP), aspirin group (ASP), and clopidogrel combined with aspirin group (CLOP + ASP); left upper first molar was extracted, after which mice in 1 week of adaptive feeding, CLOP/ASP/CLOP + ASP groups were respectively administered with clopidogrel (10 mg/kg/d), aspirin (15 mg/kg/d), clopidogrel (10 mg/kg/d)+aspirin (15 mg/kg/d), and the control group was given an equal amount of 0.9% saline by gavage. Mice in each group were euthanized at 14 and 28 days postoperatively, and the maxilla was extracted. The tissues in the extraction sockets were examined using MicroCT and sectioned for HE staining, Masson staining, and TRAP staining, and immunohistochemistry staining (for TRAP, RANKL and osteoprotegerin). Results MicroCT analysis showed that at day 14, BS/BV was significantly lower in CLOP and CLOP + ASP groups compared to control and ASP groups, while BV/TV, Tb.Th was significantly higher. At day 28, BV/TV was significantly higher in the CLOP + ASP group compared to the CLOP group, with p < 0.05 for all results. HE staining and Masson trichrome staining findings revealed that at day 28, the mesenchyme in the bone was further decreased compared to that at day 14, accompanied with tightly arranged and interconnected bone trabeculae. In the quantitative analysis of Masson, the fraction of newly formed collagen was significantly higher in the CLOP group in comparison with that in the CON group (p < 0.05). At day 14, the ASP group had substantially more TRAP-positive cells than the CLOP and CLOP + ASP groups (p < 0.05). In immunohistochemical staining, RANKL expression was found to be significantly higher in the ASP group than those in the other three groups at day 28 (p < 0.05); OPG expression was significantly higher in the CLOP group and the CLOP + ASP group compared with that at day 14, and was higher than that in the ASP group at day 14 and day 28. OPG/RANKL was significantly higher in the CLOP and the CLOP + ASP groups than in the ASP group (p < 0.05). Conclusion Clopidogrel alone promotes osteogenesis in the extraction wound, whereas aspirin alone inhibits alveolar bone healing. When the two drugs were combined, the healing effect of the extraction wound was more similar to that of the clopidogrel alone group. These results indicated that clopidogrel could promote the healing of the tooth extraction wound, and neutralize the adverse effect of ASP on osteogenesis when the two drugs were used in combination.
Collapse
Affiliation(s)
- Jiaping Wang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Lin
- Nanjing First Hospital, Department of Stomatology, Nanjing, China
| | - Xin Song
- Nanjing First Hospital, Department of Stomatology, Nanjing, China
| | - Mengting Wang
- Nanjing First Hospital, Department of Stomatology, Nanjing, China
| | - Yan Chen
- Nanjing First Hospital, Department of Stomatology, Nanjing, China
| | - Ning Luo
- Nanjing First Hospital, Department of Stomatology, Nanjing, China
| | - Xin Wu
- Nanjing First Hospital, Department of Stomatology, Nanjing, China
| |
Collapse
|
5
|
Zhang D, Lin W, Jiang S, Deng P, Liu L, Wang Q, Sheng R, Shu HS, Wang L, Zou W, Zhou BO, Jing J, Ye L, Yu B, Zhang S, Yuan Q. Lepr-Expressing PDLSCs Contribute to Periodontal Homeostasis and Respond to Mechanical Force by Piezo1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303291. [PMID: 37553778 PMCID: PMC10582421 DOI: 10.1002/advs.202303291] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Periodontium supports teeth in a mechanically stimulated tissue environment, where heterogenous stem/progenitor populations contribute to periodontal homeostasis. In this study, Leptin receptor+ (Lepr+) cells are identified as a distinct periodontal ligament stem cell (PDLSC) population by single-cell RNA sequencing and lineage tracing. These Lepr+ PDLSCs are located in the peri-vascular niche, possessing multilineage potential and contributing to tissue repair in response to injury. Ablation of Lepr+ PDLSCs disrupts periodontal homeostasis. Hyper-loading and unloading of occlusal forces modulate Lepr+ PDLSCs activation. Piezo1 is demonstrated that mediates the mechanosensing of Lepr+ PDLSCs by conditional Piezo1-deficient mice. Meanwhile, Yoda1, a selective activator of Piezo1, significantly accelerates periodontal tissue growth via the induction of Lepr+ cells. In summary, Lepr marks a unique multipotent PDLSC population in vivo, to contribute toward periodontal homeostasis via Piezo1-mediated mechanosensing.
Collapse
Affiliation(s)
- Danting Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Peng Deng
- Division of Oral and Systemic Health SciencesSchool of DentistryUniversity of California Los AngelesLos AngelesCA90095USA
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Hui Sophie Shu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Lijun Wang
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Bo O. Zhou
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical SciencesTianjin300020China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Bo Yu
- Division of Preventive and Restorative SciencesSchool of DentistryUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of Oral ImplantologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of Oral ImplantologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Zhao N, Li QX, Wang YF, Qiao Q, Huang HY, Guo CB, Guo YX. Anti-angiogenic drug aggravates the degree of anti-resorptive drug-based medication-related osteonecrosis of the jaw by impairing the proliferation and migration function of gingival fibroblasts. BMC Oral Health 2023; 23:330. [PMID: 37245004 DOI: 10.1186/s12903-023-03034-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Long-term use of anti-resorptive or anti-angiogenic drugs in cancer patients with odontogenic infections may lead to medication-related osteonecrosis of the jaw (MRONJ). This study investigated whether anti-angiogenic agents aggravate MRONJ occurrence in anti-resorptive-treated patients. METHODS The clinical stage and jawbone exposure of MRONJ patients caused by different drug regimens were analyzed to ascertain the aggravation effect of anti-angiogenic drugs on anti-resorptive drug-based MRONJ. Next, a periodontitis mice model was established, and tooth extraction was performed after administering anti-resorptive and/or anti-angiogenic drugs; the imaging and histological change of the extraction socket were observed. Moreover, the cell function of gingival fibroblasts was analyzed after the treatment with anti-resorptive and/or anti-angiogenic drugs in order to evaluate their effect on the gingival tissue healing of the extraction socket. RESULTS Patients treated with anti-angiogenic and anti-resorptive drugs had an advanced clinical stage and a bigger proportion of necrotic jawbone exposure compared to patients treated with anti-resorptive drugs alone. In vivo study further indicated a greater loss of mucosa tissue coverage above the tooth extraction in mice treated with sunitinib (Suti) + zoledronate (Zole) group (7/10) vs. Zole group (3/10) and Suti group (1/10). Micro-computed tomography (CT) and histological data showed that the new bone formation in the extraction socket was lower in Suti + Zole and Zole groups vs. Suti and control groups. In vitro data showed that the anti-angiogenic drugs had a stronger inhibitory ability on the proliferation and migration function of gingival fibroblasts than anti-resorptive drugs, and the inhibitory effect was obviously enhanced after combining zoledronate and sunitinib. CONCLUSION Our findings provided support for a synergistic contribution of anti-angiogenic drugs to anti-resorptive drugs-based MRONJ. Importantly, the present study revealed that anti-angiogenic drugs alone do not induce severe MRONJ but aggravate the degree of MRONJ via the enhanced inhibitory function of gingival fibroblasts based on anti-resorptive drugs.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Qing-Xiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yi-Fei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Hong-Yuan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Chuan-Bin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China.
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China.
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| | - Yu-Xing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China.
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China.
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| |
Collapse
|
7
|
Soares AP, Fischer H, Aydin S, Steffen C, Schmidt-Bleek K, Rendenbach C. Uncovering the unique characteristics of the mandible to improve clinical approaches to mandibular regeneration. Front Physiol 2023; 14:1152301. [PMID: 37008011 PMCID: PMC10063818 DOI: 10.3389/fphys.2023.1152301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps. However, the mandible is a craniofacial bone with unique characteristics. Its morphogenesis, morphology, physiology, biomechanics, genetic profile, and osteoimmune environment are different from any other non-craniofacial bone. This fact is especially important to consider during mandibular reconstruction, as all these differences result in unique clinical traits of the mandible that can impact the results of jaw reconstructions. Furthermore, overall changes in the mandible and the flap post-reconstruction may be dissimilar, and the replacement process of the bone graft tissue during healing can take years, which in some cases can result in postsurgical complications. Therefore, the present review highlights the uniqueness of the jaw and how this factor can influence the outcome of its reconstruction while using an exemplary clinical case of pseudoarthrosis in a free vascularized fibula flap.
Collapse
Affiliation(s)
- Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ana Prates Soares,
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centrum für Muskuloskeletale Chirurgie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrin Aydin
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|