1
|
Banerjee S, Dutta T, Lahiri S, Sengupta S, Gangopadhyay A, Kumar Karri S, Chakraborty S, Bhattacharya D, Ghosh AK. Enzymatic attributes of an l-isoaspartyl methyltransferase from Candida utilis and its role in cell survival. Biochem Biophys Rep 2015; 4:59-75. [PMID: 29124188 PMCID: PMC5668901 DOI: 10.1016/j.bbrep.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Spontaneous deamidation and isoaspartate (IsoAsp) formation contributes to aging and reduced longevity in cells. A protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT) is responsible for minimizing IsoAsp moieties in most organisms. METHODS PCMT was purified in its native form from yeast Candida utilis. The role of the native PCMT in cell survival and protein repair was investigated by manipulating intracellular PCMT levels with Oxidized Adenosine (AdOx) and Lithium Chloride (LiCl). Proteomic Identification of possible cellular targets was carried out using 2-dimensional gel electrophoresis, followed by on-Blot methylation and mass spectrometric analysis. RESULTS The 25.4 kDa native PCMT from C. utilis was found to have a Km of 3.5 µM for AdoMet and 33.36 µM for IsoAsp containing Delta Sleep Inducing Peptide (DSIP) at pH 7.0. Native PCMT comprises of 232 amino acids which is coded by a 698 bp long nucleotide sequence. Phylogenetic comparison revealed the PCMT to be related more closely with the prokaryotic homologs. Increase in PCMT levels in vivo correlated with increased cell survival under physiological stresses. PCMT expression was seen to be linked with increased intracellular reactive oxygen species (ROS) concentration. Proteomic identification of possible cellular substrates revealed that PCMT interacts with proteins mainly involved with cellular housekeeping. PCMT effected both functional and structural repair in aged proteins in vitro. GENERAL SIGNIFICANCE Identification of PCMT in unicellular eukaryotes like C. utilis promises to make investigations into its control machinery easier owing to the familiarity and flexibility of the system.
Collapse
Affiliation(s)
- Shakri Banerjee
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Trina Dutta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sagar Lahiri
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shinjinee Sengupta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anushila Gangopadhyay
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suresh Kumar Karri
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sandeep Chakraborty
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debasish Bhattacharya
- Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anil K. Ghosh
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
2
|
Rabbani G, Kaur J, Ahmad E, Khan RH, Jain SK. Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi. Appl Microbiol Biotechnol 2013; 98:2533-43. [PMID: 23949993 PMCID: PMC7080034 DOI: 10.1007/s00253-013-5123-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/14/2013] [Accepted: 07/10/2013] [Indexed: 02/08/2023]
Abstract
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0-7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m ~ 69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.
Collapse
Affiliation(s)
- Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | | | |
Collapse
|
3
|
Ramshini H, Ebrahim-Habibi A. Thermal disaggregation of type B yeast hexokinase by indole derivatives: a mechanistic study. Int J Biol Macromol 2012; 50:1260-6. [PMID: 22421217 DOI: 10.1016/j.ijbiomac.2012.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Protein aggregation is a pathological hallmark of several human disorders, and a central problem in biotechnology, occurring during purification, sterilization, shipping and storage of protein structures. The process is a very complex one, characterized with a remarkable polymorphism of aggregates, including soluble amyloid oligomers, amyloid fibrils and amorphous species. While amyloid structure formation has been extensively investigated during the recent years, amorphous aggregation is still not well characterized. Use of small molecules that affect this process could be informative in this regard. In order to explore the inhibiting effect of small molecules on the amorphous aggregate formation, yeast hexokinase-B, a key enzyme in metabolism, has been chosen for the present study. Thermal aggregation of the enzyme was investigated in 50 mM phosphate buffer, pH 7 at 55°C and the extent of aggregation was measured by monitoring the increase in absorbance at 350 nm versus time. Possible anti-aggregation effects of a variety of non-specific ligands including indole, tryptophan, carbinol, and indomethacin were explored. Turbidity of the protein solutions was found to be diminished by the presence of these small molecules in the above conditions, with the highest effects being exerted by indomethacin. Dynamic light scattering and HPLC confirmed that indomethacin had the highest anti-aggregation effect. These observations, taken together, suggest that the indole ring is likely to play an important role in aggregation inhibition.
Collapse
Affiliation(s)
- Hassan Ramshini
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | |
Collapse
|
4
|
Grancic P, Illeova V, Polakovic M, Sefcik J. Thermally induced inactivation and aggregation of urease: Experiments and population balance modelling. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2011.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Moisan MC, Garcés R, Martínez-Force E. Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:299-308. [PMID: 20889232 DOI: 10.1016/j.jplph.2010.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 05/09/2023]
Abstract
A full-length hexokinase cDNA, HaHXK1, was cloned and characterized from Helianthus annuus L. developing seeds. Based on its sequence and phylogenetic relationships, HaHXK1 is a membrane-associated (type-B) hexokinase. The predicted structural model resembles known hexokinase structures, folding into two domains of unequal size: a large and a small one separated by a deep cleft containing the residues involved in the enzyme active site. A truncated version, without the 24 N-terminal residues, was heterologously expressed in Escherichia coli, purified to electrophoretic homogeneity using immobilized metal ion affinity chromatography and biochemically characterized. The purified enzyme behaved as a monomer on size exclusion chromatography and had a specific activity of 19.3 μmol/min/mg protein, the highest specific activity ever reported for a plant hexokinase. The enzyme had higher affinity for glucose and mannose relative to fructose, but the enzymatic efficiency was higher with glucose. Recombinant HaHXK1 was inhibited by ADP and was insensitive either to glucose-6-phosphate or to trehalose-6-phosphate. Its expression profile showed higher levels in heterotrophic tissues, developing seeds and roots, than in photosynthetic ones. A time course of HXK activity and expression in seeds showed that the highest HXK levels are found at the early stages of reserve compounds, lipids and proteins accumulation.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa, CSIC, Avenida Padre Garcia Tejero 4, Seville, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|