1
|
Liang H, Zhang Y, Wang S, Gao H. Mutual interplay between ArcA and σ E orchestrates envelope stress response in Shewanella oneidensis. Environ Microbiol 2020; 23:652-668. [PMID: 32372525 DOI: 10.1111/1462-2920.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
To survive and thrive in harsh and ever-changing environments, intricate mechanisms have evolved for bacterial cells to monitor perturbations impacting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In this study, we report in Shewanella oneidensis a previously undescribed mechanism for the envelope defect resulting from the loss of Arc, a two-component transcriptional regulatory system crucial for respiration. We uncovered σE , a master regulator establishing and maintaining the integrity of the cell envelope in γ-proteobacteria, as the determining factor for the cell envelope defect of the arcA mutant. When ArcA is depleted, σE activity is compromised by enhanced production of anti-σE protein RseA. Surprisingly, S. oneidensis σE is not essential for viability, but becomes so in the absence of ArcA. Furthermore, we demonstrated that there is an interplay between these two regulators as arcA expression is affected by availability of σE . Overall, our results underscore functional interplay of regulatory systems for envelope stress response: although each of the systems may respond to perturbation of particular components of the envelope, they are functionally intertwined, working together to form an interconnected safety net.
Collapse
Affiliation(s)
- Huihui Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Yongting Zhang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Sijing Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
2
|
Carvalho AM, Fernandes E, Gonçalves H, Giner-Casares JJ, Bernstorff S, Nieder JB, Real Oliveira MECD, Lúcio M. Prediction of paclitaxel pharmacokinetic based on in vitro studies: Interaction with membrane models and human serum albumin. Int J Pharm 2020; 580:119222. [PMID: 32194209 DOI: 10.1016/j.ijpharm.2020.119222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/10/2023]
Abstract
Interactions of paclitaxel (PTX) with models mimicking biological interfaces (lipid membranes and serum albumin, HSA) were investigated to test the hypothesis that the set of in vitro assays proposed can be used to predict some aspects of drug pharmacokinetics (PK). PTX membrane partitioning was studied by derivative spectrophotometry; PTX effect on membrane biophysics was evaluated by dynamic light scattering, fluorescence anisotropy, atomic force microscopy and synchrotron small/wide-angle X-ray scattering; PTX distribution/molecular orientation in membranes was assessed by steady-state/time-resolved fluorescence and computer simulations. PTX binding to HSA was studied by fluorescence quenching, derivative spectrophotometry and dynamic/electrophoretic light scattering. PTX high membrane partitioning is consistent with its efficacy crossing cellular membranes and its off-target distribution. PTX is closely located in the membrane phospholipids headgroups, also interacting with the hydrophobic chains, and causes a major distortion of the alignment of the membrane phospholipids, which, together with its fluidizing effect, justifies some of its cellular toxic effects. PTX binds strongly to HSA, which is consistent with its reduced distribution in target tissues and toxicity by bioaccumulation. In conclusion, the described set of biomimetic models and techniques has the potential for early prediction of PK issues, alerting for the required drug optimizations, potentially minimizing the number of animal tests used in the drug development process.
Collapse
Affiliation(s)
- Ana M Carvalho
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Nanophotonics Department, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | | | - Juan J Giner-Casares
- Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain.
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, in Area Science Park, I-34149 Basovizza, Trieste, Italy.
| | - Jana B Nieder
- Nanophotonics Department, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - M Elisabete C D Real Oliveira
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Mechanism of local anesthetic-induced disruption of raft-like ordered membrane domains. Biochim Biophys Acta Gen Subj 2019; 1863:1381-1389. [PMID: 31207252 DOI: 10.1016/j.bbagen.2019.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Because ordered membrane domains, called lipid rafts, regulate activation of ion channels related to the nerve pulse, lipids rafts are thought to be a possible target for anesthetic molecules. To understand the mechanism of anesthetic action, we examined influence of representative local anesthetics (LAs); dibucaine, tetracaine, and lidocaine, on raft-like liquid-ordered (Lo)/non-raft-like liquid-disordered (Ld) phase separation. METHODS Impact of LAs on the phase separation was observed by fluorescent microscopy. LA-induced perturbation of the Lo and Ld membranes was examined by DPH anisotropy measurements. Incorporation of LAs to the membranes was examined by fluorescent anisotropy of LAs. The biding location of the LAs was indicated by small angle x-ray diffraction (SAXD). RESULTS Fluorescent experiments showed that dibucaine eliminated the phase separation the most effectively, followed by tetracaine and lidocaine. The disruption of the phase separation can be explained by their disordering effects on the Lo membrane. SAXD and other experiments further suggested that dibucaine's most potent perturbation of the Lo membrane is attributable to its deeper immersion and bulky molecular structure. Tetracaine, albeit immersed in the Lo membrane as deeply as dibucaine, less perturbs the Lo membrane probably because of its smaller bulkiness. Lidocaine hardly reaches the hydrophobic region, resulting in the weakest Lo membrane perturbation. CONCLUSION Dibcaine perturbs the Lo membrane the most effectively, followed by tetracaine and lidocaine. This ranking correlates with their anesthetic potency. GENERAL SIGNIFICANCE This study suggests a possible mechanistic link between anesthetic action and perturbation of lipid rafts.
Collapse
|
4
|
Lopes S, Ivanova G, de Castro B, Gameiro P. Cardiolipin and phosphatidylethanolamine role in dibucaine interaction with the mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1152-1161. [DOI: 10.1016/j.bbamem.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
|
5
|
de M Barbosa R, Ribeiro LNM, Casadei BR, da Silva CMG, Queiróz VA, Duran N, de Araújo DR, Severino P, de Paula E. Solid Lipid Nanoparticles for Dibucaine Sustained Release. Pharmaceutics 2018; 10:E231. [PMID: 30441802 PMCID: PMC6321380 DOI: 10.3390/pharmaceutics10040231] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dibucaine (DBC) is among the more potent long-acting local anesthetics (LA), and it is also one of the most toxic. Over the last decades, solid lipid nanoparticles (SLN) have been developed as promising carriers for drug delivery. In this study, SLN formulations were prepared with the aim of prolonging DBC release and reducing its toxicity. To this end, SLN composed of two different lipid matrices and prepared by two different hot-emulsion techniques (high-pressure procedure and sonication) were compared. The colloidal stability of the SLN formulations was tracked in terms of particle size (nm), polydispersity index (PDI), and zeta potential (mV) for 240 days at 4 °C; the DBC encapsulation efficiency was determined by the ultrafiltration/centrifugation method. The formulations were characterized by differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and release kinetic experiments. Finally, the in vitro cytotoxicity against 3T3 fibroblast and HaCaT cells was determined, and the in vivo analgesic action was assessed using the tail flick test in rats. Both of the homogenization procedures were found suitable to produce particles in the 200 nm range, with good shelf stability (240 days) and high DBC encapsulation efficiency (~72⁻89%). DSC results disclosed structural information on the nanoparticles, such as the lower crystallinity of the lipid core vs. the bulk lipid. EPR measurements provided evidence of DBC partitioning in both SLNs. In vitro (cytotoxicity) and in vivo (tail flick) experiments revealed that the encapsulation of DBC into nanoparticles reduces its intrinsic cytotoxicity and prolongs the anesthetic effect, respectively. These results show that the SLNs produced are safe and have great potential to extend the applications of dibucaine by enhancing its bioavailability.
Collapse
Affiliation(s)
- Raquel de M Barbosa
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
- Pharmacy Department, UNINASSAU-Natal College, Natal 59080-400, RN, Brazil.
| | - Ligia N M Ribeiro
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Bruna R Casadei
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Camila M G da Silva
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Viviane A Queiróz
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| | - Nelson Duran
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-861, SP, Brazil.
| | - Daniele R de Araújo
- Human and Natural Sciences Center, Federal University of ABC, Santo André 09210-580, SP, Brazil.
| | - Patrícia Severino
- Institute of Technology and Research. Av. Murilo Dantas, 300, Aracaju 49032-490, SE, Brazil.
| | - Eneida de Paula
- Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.
| |
Collapse
|
6
|
Barbosa RM, Casadei BR, Duarte EL, Severino P, Barbosa LRS, Duran N, de Paula E. Electron Paramagnetic Resonance and Small-Angle X-ray Scattering Characterization of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Dibucaine Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13296-13304. [PMID: 30299102 DOI: 10.1021/acs.langmuir.8b02559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dibucaine (DBC) is one of the most potent long-acting local anesthetics, but it also has significant toxic side effects and low water solubility. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been proposed as drug-delivery systems to increase the bioavailability of local anesthetics. The purpose of the present study was to characterize SLNs and NLCs composed of cetyl palmitate or myristyl myristate, a mixture of capric and caprylic acids (for NLCs only) plus Pluronic F68 prepared for the encapsulation of DBC. We intended to provide a careful structural characterization of the nanoparticles to identify the relevant architectural parameters that lead to the desirable biological response. Initially, SLNs and NLCs were assessed in terms of their size distribution, morphology, surface charge, and drug loading. Spectroscopic techniques (infrared spectroscopy and electron paramagnetic resonance, EPR) plus small-angle X-ray scattering (SAXS) provided information on the interactions between nanoparticle components and their structural organization. The sizes of nanoparticles were in the 180 nm range with low polydispersity and negative zeta values (-25 to -46 mV). The partition coefficient of DBC between nanoparticles and water at pH 8.2 was very high (>104). EPR (with doxyl-stearate spin labels) data revealed the existence of lamellar arrangements inside the lipid nanoparticles, which was also confirmed by SAXS experiments. Moreover, the addition of DBC increased the molecular packing of both SLN and NLC lipids, indicative of DBC insertion between the lipids, in the milieu assessed by spin labels. Such structural information brings insights into understanding the molecular organization of these versatile drug-delivery systems which have already demonstrated their potential for therapeutic applications in pain control.
Collapse
Affiliation(s)
- Raquel M Barbosa
- Biochemistry and Tissue Biology Department, Institute of Biology , University of Campinas (UNICAMP) , 13083-862 Campinas , São Paulo , Brazil
- Pharmacy Department , UNINASSAU College , 59080-400 Natal , Rio Grande do Norte , Brazil
| | - Bruna R Casadei
- Biophysics Department , Federal University of São Paulo (UNIFESP) , 04021-001 São Paulo , São Paulo , Brazil
| | - Evandro L Duarte
- Physics Institute , University of São Paulo (USP) , 05508-090 São Paulo , São Paulo , Brazil
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED) , Tiradentes University (UNIT) and Institute of Technology and Research (ITP) , Av. Murilo Dantas, 300 , 49010-390 Aracaju , Sergipe , Brazil
| | - Leandro R S Barbosa
- Physics Institute , University of São Paulo (USP) , 05508-090 São Paulo , São Paulo , Brazil
| | - Nelson Duran
- Institute of Chemistry , University of Campinas (UNICAMP) , 13083-861 Campinas , São Paulo , Brazil
| | - Eneida de Paula
- Biochemistry and Tissue Biology Department, Institute of Biology , University of Campinas (UNICAMP) , 13083-862 Campinas , São Paulo , Brazil
| |
Collapse
|
7
|
Nowotarska SW, Nowotarski K, Grant IR, Elliott CT, Friedman M, Situ C. Mechanisms of Antimicrobial Action of Cinnamon and Oregano Oils, Cinnamaldehyde, Carvacrol, 2,5-Dihydroxybenzaldehyde, and 2-Hydroxy-5-Methoxybenzaldehyde against Mycobacterium avium subsp. paratuberculosis (Map). Foods 2017; 6:foods6090072. [PMID: 28837070 PMCID: PMC5615284 DOI: 10.3390/foods6090072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
The antimicrobial modes of action of six naturally occurring compounds, cinnamon oil, cinnamaldehyde, oregano oil, carvacrol, 2,5-dihydroxybenzaldehyde, and 2-hydroxy-5-methoxybenzaldehyde, previously found to inhibit the growth of Mycobacterium avium subsp. paratuberculosis (Map) reported to infect food animals and humans and to be present in milk, cheese, and meat, were investigated. The incubation of Map cultures in the presence of all six compounds caused phosphate ions to leak into the extracellular environment in a time- and concentration-dependent manner. Cinnamon oil and cinnamaldehyde decreased the intracellular adenosine triphosphate (ATP) concentration of Map cells, whereas oregano oil and carvacrol caused an initial decrease of intracellular ATP concentration that was restored gradually after incubation at 37 °C for 2 h. Neither 2,5-dihydroxybenzaldehyde nor 2-hydroxy-5-methoxybenzaldehyde had a significant effect on intracellular ATP concentration. None of the compounds tested were found to cause leakage of ATP to the extracellular environment. Monolayer studies involving a Langmuir trough apparatus revealed that all anti-Map compounds, especially the essential oil compounds, altered the molecular packing characteristics of phospholipid molecules of model membranes, causing fluidization. The results of the physicochemical model microbial membrane studies suggest that the destruction of the pathogenic bacteria might be associated with the disruption of the bacterial cell membrane.
Collapse
Affiliation(s)
- Stella W Nowotarska
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Krzysztof Nowotarski
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
8
|
Neves AR, Nunes C, Amenitsch H, Reis S. Resveratrol Interaction with Lipid Bilayers: A Synchrotron X-ray Scattering Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12914-12922. [PMID: 27788010 DOI: 10.1021/acs.langmuir.6b03591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resveratrol belongs to the large group of biologically active polyphenol compounds, with several beneficial health effects including antioxidant activity, anti-inflammatory action, cardiovascular protection, neuroprotection, and cancer chemoprevention. In the present study, the possibility that the effects of resveratrol described above are caused by resveratrol membrane interactions and structural modifications of lipid bilayers is evaluated. In this context, it is possible that resveratrol interacts selectively with lipid domains present in biological membranes, thereby modulating the localization of the anchored proteins and controlling their intracellular cascades. This study was conducted in a synchrotron particle accelerator, where the influence of resveratrol in the structural organization of lipid domains in bilayers was investigated using small- and wide-angle X-ray scattering (SAXS and WAXS) techniques. Membrane mimetic systems composed of egg l-α-phosphatidylcholine (EPC), cholesterol (CHOL), and sphingomyelin (SM), with different molar ratios, were used to access the effects of resveratrol on the order and structure of the membrane. The results revealed that resveratrol induces phase separation, promoting the formation of lipid domains in EPC, EPC:CHOL [4:1], and EPC:CHOL:SM [1:1:1] bilayers, which brings some structural organization to membranes. Therefore, resveratrol controls lipid packing of bilayers by inducing the organization of lipid rafts. Moreover, the formation of lipid domains is important for modulating the activity of many receptors, transmembrane proteins, and enzymes whose activity depends on the structural organization of the membrane and on the presence or absence of these organized domains. This evidence can thereby explain the therapeutic effects of resveratrol.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology , Stremayergasse 6/V, 8010 Graz, Austria
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants. Molecules 2015; 20:18923-66. [PMID: 26501254 PMCID: PMC6332185 DOI: 10.3390/molecules201018923] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
Abstract
In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction’s applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.
Collapse
|
10
|
Neves AR, Nunes C, Reis S. Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:12-8. [PMID: 26456556 DOI: 10.1016/j.bbamem.2015.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022]
Abstract
Resveratrol is a polyphenol compound with great value in cancer therapy, cardiovascular protection, and neurodegenerative disorders. The mechanism by which resveratrol exerts such pleiotropic effects is not yet clear and there is a huge need to understand the influence of this compound on the regulation of lipid domains formation on membrane structure. The aim of the present study was to reveal potential molecular interactions between resveratrol and lipid rafts found in cell membranes by means of Förster resonance energy transfer, DPH fluorescence quenching, and triton X-100 detergent resistance assay. Liposomes composed of egg phosphatidylcholine, cholesterol, and sphingomyelin were used as model membranes. The results revealed that resveratrol induces phase separation and formation of liquid-ordered domains in bilayer structures. The formation of such tightly packed lipid rafts is important for different signal transduction pathways, through the regulation of membrane-associating proteins, that can justify several pharmacological activities of this compound.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
11
|
Arantes LM, Varejão EVV, Pelizzaro-Rocha KJ, Cereda CMS, de Paula E, Lourenço MP, Duarte HA, Fernandes SA. Benzocaine complexation with p-sulfonic acid calix[n]arene: experimental ((1) H-NMR) and theoretical approaches. Chem Biol Drug Des 2014; 83:550-9. [PMID: 24289315 DOI: 10.1111/cbdd.12267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022]
Abstract
The aim of this work was to study the interaction between the local anesthetic benzocaine and p-sulfonic acid calix[n]arenes using NMR and theoretical calculations and to assess the effects of complexation on cytotoxicity of benzocaine. The architectures of the complexes were proposed according to (1) H NMR data (Job plot, binding constants, and ROESY) indicating details on the insertion of benzocaine in the cavity of the calix[n]arenes. The proposed inclusion compounds were optimized using the PM3 semiempirical method, and the electronic plus nuclear repulsion energy contributions were performed at the DFT level using the PBE exchange/correlation functional and the 6-311G(d) basis set. The remarkable agreement between experimental and theoretical approaches adds support to their use in the structural characterization of the inclusion complexes. In vitro cytotoxic tests showed that complexation intensifies the intrinsic toxicity of benzocaine, possibly by increasing the water solubility of the anesthetic and favoring its partitioning inside of biomembranes.
Collapse
Affiliation(s)
- Lucas M Arantes
- Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, Universidade Federal de Viçosa (UFV), Viçosa, Brazil, 36570-000
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pinheiro M, Pereira‐Leite C, Arêde M, Nunes C, Caio JM, Moiteiro C, Giner‐Casares JJ, Lúcio M, Brezesinski G, Camacho L, Reis S. Evaluation of the Structure–Activity Relationship of Rifabutin and Analogs: A Drug–Membrane Study. Chemphyschem 2013; 14:2808-16. [PMID: 23821530 DOI: 10.1002/cphc.201300262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Catarina Pereira‐Leite
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Mariana Arêde
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Cláudia Nunes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - João M. Caio
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa (Portugal)
| | - Cristina Moiteiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa (Portugal)
| | - Juan J. Giner‐Casares
- Departamento de Química Física y Termodinámica, Universidad de Córdoba, España (Spain)
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam (Germany)
| | - Marlene Lúcio
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Gerald Brezesinski
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam (Germany)
| | - Luis Camacho
- Departamento de Química Física y Termodinámica, Universidad de Córdoba, España (Spain)
| | - Salette Reis
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| |
Collapse
|
13
|
Barbosa RM, Silva CMGD, Bella TS, Araújo DRD, Marcato PD, Durán N, Paula ED. Cytotoxicity of solid lipid nanoparticles and nanostructured lipid carriers containing the local anesthetic dibucaine designed for topical application. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/429/1/012035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Caruso B, Sánchez JM, García DA, de Paula E, Perillo MA. Probing the combined effect of flunitrazepam and lidocaine on the stability and organization of bilayer lipid membranes. A differential scanning calorimetry and dynamic light scattering study. Cell Biochem Biophys 2012; 66:461-75. [PMID: 23269502 DOI: 10.1007/s12013-012-9494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Combined effects of flunitrazepam (FNZ) and lidocaine (LDC) were studied on the thermotropic equilibrium of dipalmitoyl phosphatidylcholine (dpPC) bilayers. This adds a thermodynamic dimension to previously reported geometric analysis in the erythrocyte model. LDC decreased the enthalpy and temperature for dpPC pre- and main-transitions (ΔHp, ΔHm, Tp, Tm) and decreased the cooperativity of the main-transition (ΔT(1/2,m)). FNZ decreased ΔHm and, at least up to 59 μM, also decreased ΔHp. In conjunction with LDC, FNZ induced a recovery of ∆T(1/2,m) control values and increased ΔHm even above the control level. The deconvolution of the main-transition peak at high LDC concentrations revealed three components possibly represented by: a self-segregated fraction of pure dpPC, a dpPC-LDC mixture and a phase with a lipid structure of intermediate stability associated with LDC self-aggregation within the lipid phase. Some LDC effects on thermodynamic parameters were reverted at proper LDC/FNZ molar ratios, suggesting that FNZ restricts the maximal availability of the LDC partitioned into the lipid phase. Thus, beyond its complexity, the lipid-LDC mixture can be rationalized as an equilibrium of coexisting phases which gains homogeneity in the presence of FNZ. This work stresses the relevance of nonspecific drug-membrane binding on LDC-FNZ pharmacological interactions and would have pharmaceutical applications in liposomal multidrug-delivery.
Collapse
Affiliation(s)
- Benjamín Caruso
- Departamento de Química, FCEFyN, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | |
Collapse
|
15
|
Weizenmann N, Huster D, Scheidt HA. Interaction of local anesthetics with lipid bilayers investigated by 1H MAS NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3010-8. [DOI: 10.1016/j.bbamem.2012.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022]
|
16
|
Morandat S, Azouzi S, Beauvais E, Mastouri A, El Kirat K. Atomic force microscopy of model lipid membranes. Anal Bioanal Chem 2012; 405:1445-61. [DOI: 10.1007/s00216-012-6383-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
17
|
Yi Z, Nagao M, Bossev DP. Effect of charged lidocaine on static and dynamic properties of model bio-membranes. Biophys Chem 2012; 160:20-7. [DOI: 10.1016/j.bpc.2011.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/28/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
18
|
Cancino J, Nobre TM, Oliveira ON, Machado SAS, Zucolotto V. A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models. Nanotoxicology 2011; 7:61-70. [DOI: 10.3109/17435390.2011.629748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Nunes C, Brezesinski G, Lopes D, Lima JL, Reis S, Lúcio M. Lipid–Drug Interaction: Biophysical Effects of Tolmetin on Membrane Mimetic Systems of Different Dimensionality. J Phys Chem B 2011; 115:12615-23. [DOI: 10.1021/jp206013z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Cláudia Nunes
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 164, Rua Aníbal Cunha, Porto, Portugal
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Daniela Lopes
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 164, Rua Aníbal Cunha, Porto, Portugal
| | - José L.F.C. Lima
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 164, Rua Aníbal Cunha, Porto, Portugal
| | - Salette Reis
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 164, Rua Aníbal Cunha, Porto, Portugal
| | - Marlene Lúcio
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 164, Rua Aníbal Cunha, Porto, Portugal
| |
Collapse
|
20
|
Nunes C, Brezesinski G, Pereira-Leite C, Lima JLFC, Reis S, Lúcio M. NSAIDs interactions with membranes: a biophysical approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10847-58. [PMID: 21790169 DOI: 10.1021/la201600y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.
Collapse
Affiliation(s)
- Cláudia Nunes
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
21
|
Peropadre A, Fernández Freire P, Herrero Ó, Pérez Martín JM, Hazen MJ. Cellular Responses Associated with Dibucaine-Induced Phospholipidosis. Chem Res Toxicol 2011; 24:185-92. [DOI: 10.1021/tx100262c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ana Peropadre
- Cellular Toxicology Group, Laboratory A-110, C/Darwin 2, 28049 Madrid, Spain
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Spain
| | - Paloma Fernández Freire
- Cellular Toxicology Group, Laboratory A-110, C/Darwin 2, 28049 Madrid, Spain
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Spain
| | - Óscar Herrero
- Cellular Toxicology Group, Laboratory A-110, C/Darwin 2, 28049 Madrid, Spain
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Spain
| | - José M. Pérez Martín
- Cellular Toxicology Group, Laboratory A-110, C/Darwin 2, 28049 Madrid, Spain
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Spain
| | - M José Hazen
- Cellular Toxicology Group, Laboratory A-110, C/Darwin 2, 28049 Madrid, Spain
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
22
|
|
23
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|
24
|
Templating membrane assembly, structure, and dynamics using engineered interfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:839-50. [PMID: 20079336 DOI: 10.1016/j.bbamem.2009.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 12/22/2009] [Accepted: 12/28/2009] [Indexed: 11/20/2022]
Abstract
The physical and chemical properties of biological membranes are intimately linked to their bounding aqueous interfaces. Supported phospholipid bilayers, obtained by surface-assisted rupture, fusion, and spreading of vesicular microphases, offer a unique opportunity, because engineering the substrate allows manipulation of one of the two bilayer interfaces as well. Here, we review a collection of recent efforts, which illustrates deliberate substrate-membrane coupling using structured surfaces exhibiting chemical and topographic patterns. Vesicle fusion on chemically patterned substrates results in co-existing lipid phases, which reflect the underlying pattern of surface energy and wettability. These co-existing bilayer/monolayer morphologies are useful both for fundamental biophysical studies (e.g., studies of membrane asymmetry) as well as for applied work, such as synthesizing large-scale arrays of bilayers or living cells. The use of patterned, static surfaces provides new models to design complex membrane topographies and curvatures. Dynamic switchable-topography surfaces and sacrificial trehalose based-substrates reveal abilities to dynamically introduce membrane curvature and change the nature of the membrane-substrate interface. Taken together, these studies illustrate the importance of controlling interfaces in devising model membrane platforms for fundamental biophysical studies and bioanalytical devices.
Collapse
|
25
|
Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26:523-80. [PMID: 20402623 PMCID: PMC2885142 DOI: 10.1615/critrevtherdrugcarriersyst.v26.i6.10] [Citation(s) in RCA: 553] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nanoemulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles.
Collapse
Affiliation(s)
- Anu Puri
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|