1
|
Sagar N, Lohiya S. A Comprehensive Review of Chloride Management in Critically Ill Patients. Cureus 2024; 16:e55625. [PMID: 38586759 PMCID: PMC10995984 DOI: 10.7759/cureus.55625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Chloride, often overshadowed in electrolyte management, emerges as a crucial player in the physiological intricacies of critically ill patients. This comprehensive review explores the multifaceted aspects of chloride, ranging from its significance in cellular homeostasis to the consequences of dysregulation in critically ill patients. The pathophysiology of hyperchloremia and hypochloremia is dissected, highlighting their intricate impact on acid-base balance, renal function, and cardiovascular stability. Clinical assessment strategies, including laboratory measurements and integration with other electrolytes, lay the foundation for targeted interventions. Consequences of dysregulated chloride levels underscore the need for meticulous management, leading to an exploration of emerging therapies and interventions. Fluid resuscitation protocols, the choice between crystalloids and colloids, the role of balanced solutions, and individualized patient approaches comprise the core strategies in chloride management. Practical considerations, such as monitoring and surveillance, overcoming implementation challenges, and embracing a multidisciplinary approach, are pivotal in translating theoretical knowledge into effective clinical practice. As we envision the future, potential impacts on critical care guidelines prompt reflections on integrating novel therapies, individualized approaches, and continuous monitoring practices. In conclusion, this review synthesizes current knowledge, addresses practical considerations, and envisions future directions in chloride management for critically ill patients. By embracing a holistic understanding, clinicians can navigate the complexities of chloride balance, optimize patient outcomes, and contribute to the evolving landscape of critical care medicine.
Collapse
Affiliation(s)
- Nandhini Sagar
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Cannon SC. Periodic paralysis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:39-58. [PMID: 39174253 PMCID: PMC11556526 DOI: 10.1016/b978-0-323-90820-7.00002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Periodic paralysis is a rare, dominantly inherited disorder of skeletal muscle in which episodic attacks of weakness are caused by a transient impairment of fiber excitability. Attacks of weakness are often elicited by characteristic environmental triggers, which were the basis for clinically delineating subtypes of periodic paralysis and are an important distinction for optimal disease management. All forms of familial periodic paralysis are caused by mutations of ion channels, often selectively expressed in skeletal muscle, that destabilize the resting potential. The missense mutations usually alter channel function through gain-of-function changes rather than producing a complete loss-of-function null. The knowledge of which channel gene harbors a variant, whether that variant is expected to (or known to) alter function, and how altered function impairs fiber excitability aides in the interpretation of patient signs and symptoms, the interpretation of gene test results, and how to optimize therapeutic intervention for symptom management and improve quality of life.
Collapse
Affiliation(s)
- Stephen C Cannon
- Departments of Physiology and of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Mi W, Wu F, Quinonez M, DiFranco M, Cannon SC. Recovery from acidosis is a robust trigger for loss of force in murine hypokalemic periodic paralysis. J Gen Physiol 2019; 151:555-566. [PMID: 30733232 PMCID: PMC6445579 DOI: 10.1085/jgp.201812231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Hypokalemic periodic paralysis causes episodes of muscle weakness. Mi et al. investigate the rest-induced weakness that occurs after vigorous exercise and find that acidosis, as occurs with exercise, leads to accumulation of myoplasmic Cl−, which favors a depolarized resting potential when pH returns to normal. Periodic paralysis is an ion channelopathy of skeletal muscle in which recurrent episodes of weakness or paralysis are caused by sustained depolarization of the resting potential and thus reduction of fiber excitability. Episodes are often triggered by environmental stresses, such as changes in extracellular K+, cooling, or exercise. Rest after vigorous exercise is the most common trigger for weakness in periodic paralysis, but the mechanism is unknown. Here, we use knock-in mutant mouse models of hypokalemic periodic paralysis (HypoKPP; NaV1.4-R669H or CaV1.1-R528H) and hyperkalemic periodic paralysis (HyperKPP; NaV1.4-M1592V) to investigate whether the coupling between pH and susceptibility to loss of muscle force is a possible contributor to exercise-induced weakness. In both mouse models, acidosis (pH 6.7 in 25% CO2) is mildly protective, but a return to pH 7.4 (5% CO2) unexpectedly elicits a robust loss of force in HypoKPP but not HyperKPP muscle. Prolonged exposure to low pH (tens of minutes) is required to cause susceptibility to post-acidosis loss of force, and the force decrement can be prevented by maneuvers that impede Cl− entry. Based on these data, we propose a mechanism for post-acidosis loss of force wherein the reduced Cl− conductance in acidosis leads to a slow accumulation of myoplasmic Cl−. A rapid recovery of both pH and Cl− conductance, in the context of increased [Cl]in/[Cl]out, favors the anomalously depolarized state of the bistable resting potential in HypoKPP muscle, which reduces fiber excitability. This mechanism is consistent with the delayed onset of exercise-induced weakness that occurs with rest after vigorous activity.
Collapse
Affiliation(s)
- Wentao Mi
- Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marbella Quinonez
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Hoppe K, Chaiklieng S, Lehmann‐Horn F, Jurkat‐Rott K, Wearing S, Klingler W. Elevation of extracellular osmolarity improves signs of myotonia congenita in vitro: a preclinical animal study. J Physiol 2019; 597:225-235. [PMID: 30284249 PMCID: PMC6312412 DOI: 10.1113/jp276528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During myotonia congenita, reduced chloride (Cl- ) conductance results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Repetitive contraction of myotonic muscle decreases or even abolishes myotonic muscle stiffness, a phenomenon called 'warm up'. Pharmacological inhibition of low Cl- channels by anthracene-9-carboxylic acid in muscle from mice and ADR ('arrested development of righting response') muscle from mice showed a relaxation deficit under physiological conditions compared to wild-type muscle. At increased osmolarity up to 400 mosmol L-1 , the relaxation deficit of myotonic muscle almost reached that of control muscle. These effects were mediated by the cation and anion cotransporter, NKCC1, and anti-myotonic effects of hypertonicity were at least partly antagonized by the application of bumetanide. ABSTRACT Low chloride-conductance myotonia is caused by mutations in the skeletal muscle chloride (Cl- ) channel gene type 1 (CLCN1). Reduced Cl- conductance of the mutated channels results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Exercise decreases muscle stiffness, a phenomena called 'warm up'. To gain further insight into the patho-mechanism of impaired muscle stiffness and the warm-up phenomenon, we characterized the effects of increased osmolarity on myotonic function. Functional force and membrane potential measurements were performed on muscle specimens of ADR ('arrested development of righting response') mice (an animal model for low gCl- conductance myotonia) and pharmacologically-induced myotonia. Specimens were exposed to solutions of increasing osmolarity at the same time as force and membrane potentials were monitored. In the second set of experiments, ADR muscle and pharmacologically-induced myotonic muscle were exposed to an antagonist of NKCC1. Upon osmotic stress, ADR muscle was depolarized to a lesser extent than control wild-type muscle. High osmolarity diminished myotonia and facilitated the warm-up phenomenon as depicted by a faster muscle relaxation time (T90/10 ). Osmotic stress primarily resulted in the activation of the NKCC1. The inhibition of NKCC1 with bumetanide prevented the depolarization and reversed the anti-myotonic effect of high osmolarity. Increased osmolarity decreased signs of myotonia and facilitated the warm-up phenomenon in different in vitro models of myotonia. Activation of NKCC1 activity promotes warm-up and reduces the number of contractions required to achieve normal relaxation kinetics.
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of AnaesthesiaCritical Care Medicine and Pain TherapyUniversity of FrankfurtFrankfurtGermany
| | - Sunisa Chaiklieng
- Division of Neurophysiology in the Center of Rare DiseasesUlm UniversityUlmGermany
- Faculty of Public HealthKhon Knen UniversityMuang Khon KaenThailand
| | - Frank Lehmann‐Horn
- Division of Neurophysiology in the Center of Rare DiseasesUlm UniversityUlmGermany
| | - Karin Jurkat‐Rott
- Department of NeuroanaesthesiologyNeurosurgical UniversityGuenzburgGermany
| | - Scott Wearing
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
| | - Werner Klingler
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
- Department of NeuroanaesthesiologyNeurosurgical UniversityGuenzburgGermany
- Department of AnaesthesiologyIntensive Care Medicine and Pain TherapySRH KlinikumSigmarringenGermany
| |
Collapse
|
5
|
Levin M, Pezzulo G, Finkelstein JM. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annu Rev Biomed Eng 2017; 19:353-387. [PMID: 28633567 PMCID: PMC10478168 DOI: 10.1146/annurev-bioeng-071114-040647] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Tufts University, Medford, Massachusetts 02155-4243;
- Allen Discovery Center, Tufts University, Medford, Massachusetts 02155;
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy;
| | | |
Collapse
|
6
|
Abstract
The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.
Collapse
Affiliation(s)
- Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia. J Biomed Biotechnol 2011; 2011:685328. [PMID: 22187529 PMCID: PMC3237021 DOI: 10.1155/2011/685328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/18/2011] [Accepted: 09/10/2011] [Indexed: 12/22/2022] Open
Abstract
The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Thomsen type) or an autosomal recessive (Becker type) pattern. These mutations are scattered throughout the entire protein sequence, and no clear relationship exists between the inheritance pattern of the mutation and the location of the mutation in the channel protein. The inheritance pattern of some but not all myotonia mutants can be explained by a working hypothesis that these mutations may exert a “dominant negative” effect on the gating function of the channel. However, other mutations may be due to different pathophysiological mechanisms, such as the defect of protein trafficking to membranes. Thus, the underlying mechanisms of myotonia are likely to be quite diverse, and elucidating the pathophysiology of myotonia mutations will require the understanding of multiple molecular/cellular mechanisms of CLC-1 channels in skeletal muscles, including molecular operation, protein synthesis, and membrane trafficking mechanisms.
Collapse
|
8
|
Gallaher J, Bier M, van Heukelom JS. First order phase transition and hysteresis in a cell's maintenance of the membrane potential--An essential role for the inward potassium rectifiers. Biosystems 2010; 101:149-55. [PMID: 20566338 DOI: 10.1016/j.biosystems.2010.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/28/2010] [Accepted: 05/31/2010] [Indexed: 11/29/2022]
Abstract
Hysteretic behavior is found experimentally in the transmembrane potential at low extracellular potassium in mouse lumbrical muscle cells. Adding isoprenaline to the external medium eliminates the bistable, hysteretic region. The system can be modeled mathematically and understood analytically with and without isoprenaline. Inward rectifying potassium channels appear to be essential for the bistability. Relations are derived to express the dimensions of the bistable area in terms of system parameters. The selective advantage and evolutionary origin of inward rectifying channels and hysteretic behavior is discussed.
Collapse
Affiliation(s)
- Jill Gallaher
- Dept. of Physics, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|