1
|
A sensitive single-enzyme assay system using the non-ribosomal peptide synthetase BpsA for measurement of L-glutamine in biological samples. Sci Rep 2017; 7:41745. [PMID: 28139746 PMCID: PMC5282505 DOI: 10.1038/srep41745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The ability to rapidly, economically and accurately measure L-glutamine concentrations in biological samples is important for many areas of research, medicine or industry, however there is room for improvement on existing methods. We describe here how the enzyme BpsA, a single-module non-ribosomal peptide synthetase able to convert L-glutamine into the blue pigment indigoidine, can be used to accurately measure L-glutamine in biological samples. Although indigoidine has low solubility in aqueous solutions, meaning direct measurements of indigoidine synthesis do not reliably yield linear standard curves, we demonstrate that resolubilisation of the reaction end-products in DMSO overcomes this issue and that spontaneous reduction to colourless leuco-indigoidine occurs too slowly to interfere with assay accuracy. Our protocol is amenable to a 96-well microtitre format and can be used to measure L-glutamine in common bacterial and mammalian culture media, urine, and deproteinated plasma. We show that active BpsA can be prepared in high yield by expressing it in the apo-form to avoid the toxicity of indigoidine to Escherichia coli host cells, then activating it to the holo-form in cell lysates prior to purification; and that BpsA has a lengthy shelf-life, retaining >95% activity when stored at either −20 °C or 4 °C for 24 weeks.
Collapse
|
2
|
Aydin M, Yildiz A, Ibiloglu I, Ekinci A, Ulger BV, Yuksel M, Bilik MZ, Ozaydogdu N, Ekinci C, Yazgan UC. The protective role of glutamine against acute induced toxicity in rats. Toxicol Mech Methods 2015; 25:296-301. [DOI: 10.3109/15376516.2015.1025349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Gündüz E, Ülger BV, İbiloğlu İ, Ekinci A, Dursun R, Zengin Y, İçer M, Uslukaya Ö, Ekinci C, Güloğlu C. Glutamine provides effective protection against deltamethrin-induced acute hepatotoxicity in rats but not against nephrotoxicity. Med Sci Monit 2015; 21:1107-14. [PMID: 25890620 PMCID: PMC4413811 DOI: 10.12659/msm.893180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to investigate the protective effects of L-glutamine (GLN) against liver and kidney injury caused by acute toxicity of deltamethrin (DLM). Material/Methods Thirty-two rats were indiscriminately separated into 4 groups with 8 rats each: control group (distilled water; 10 ml/kg, perorally [p.o.]), DLM group (35 mg/kg p.o. one dose.), GLN group (1.5 gr/kg, p.o. single dose.) and DLM (35 mg/kg p.o. one dose.) + GLN group (1.5 gr/kg, p.o. one dose after 4 hours.). Testing for total antioxidant status (TAS), total oxidant status (TOS), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) analyses were performed on tissue samples, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), urea, and creatinine were analyzed on serum samples. Liver and kidney samples were histopathologically analyzed. Results The TOS level in liver was significantly higher in the DLM group than in the control group, and the level in DLM+GLN group was considerably lower than in the DLM group. The TAS level in the DLM+GLN group was considerably higher than in the control and DLM groups. The TAS level in kidney tissues was considerably lower in the DLM group than in controls, but was similar to other groups. Histopathological analyses of liver tissues established a significant difference between DLM and DLM+GLN groups in terms of grade 2 hepatic injury. However, no significant difference was found between DLM and DLM+GLN groups in terms of kidney injury. Conclusions Glutamine leads to significant improvement in deltamethrin-induced acute hepatotoxicity in terms of histopathologic results, tissue oxidative stress parameters, and serum liver function marker enzymes.
Collapse
Affiliation(s)
- Ercan Gündüz
- Department of Emergency Medicine, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Burak Veli Ülger
- Department of General Surgery, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - İbrahim İbiloğlu
- Department of Pathology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Aysun Ekinci
- Department of Biochemistry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Recep Dursun
- Department of Emergency Medicine, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Yılmaz Zengin
- Department of Emergency Medicine, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mustafa İçer
- Department of Emergency Medicine, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Ömer Uslukaya
- Department of General Surgery, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Cenap Ekinci
- Department of Histology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Cahfer Güloğlu
- Department of Emergency Medicine, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
4
|
Kyriakopoulos S, Polizzi KM, Kontoravdi C. Comparative analysis of amino acid metabolism and transport in CHO variants with different levels of productivity. J Biotechnol 2013; 168:543-51. [PMID: 24056080 DOI: 10.1016/j.jbiotec.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the production of biopharmaceuticals; however, our understanding of several physiological elements that contribute to productivity is limited. One of these is amino acid transport and how its limitation and/or regulation might affect productivity. To further our understanding, we have examined the expression of 40 mammalian amino acid transporter genes during batch cultures of three CHO cell lines: a non-producer and two antibody-producing cell lines with different levels of productivity. In parallel, extracellular and intracellular levels of amino acids were quantified. The aim was to identify differences in gene regulation between cell lines and within culture. Our results show that three transporters associated with transport of taurine and β-alanine, acidic amino acids and branched chain amino acids, are highly upregulated in both antibody-producing cell lines but not in the non-producer. Additionally, genes associated with the transport of amino acids related to the glutathione pathway (alanine, cysteine, cystine, glycine, glutamate) were found to be highly upregulated during the stationary phase of cell culture, correlating well with literature data on the importance of the pathway. Our analysis highlights potential markers for cell line selection and targets for process optimization.
Collapse
Affiliation(s)
- Sarantos Kyriakopoulos
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
5
|
Nault R, Abdul-Fattah H, Mironov GG, Berezovski MV, Moon TW. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis. Toxicol Appl Pharmacol 2013; 271:86-94. [DOI: 10.1016/j.taap.2013.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 02/01/2023]
|
6
|
Turkez H, Geyikoglu F, Yousef MI, Celik K, Bakir TO. Ameliorative effect of supplementation with L-glutamine on oxidative stress, DNA damage, cell viability and hepatotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat hepatocyte cultures. Cytotechnology 2012; 64:687-99. [PMID: 22453904 PMCID: PMC3488374 DOI: 10.1007/s10616-012-9449-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
The most potent of the dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a persistent and ubiquitous environmental contaminant. And the health impact of exposure to TCDD is of great concern to the general public. Recent data indicate that L-glutamine (Gln) has antioxidant properties and may influence hepatotoxicity. The objective of the present study was undertaken to explore the effectiveness of Gln in alleviating the hepatotoxicity of TCDD on primary cultured rat hepatocytes. Gln (0.5, 1 and 2 mM) was added to cultures alone or simultaneously with TCDD (0.005 and 0.01 mM). The hepatocytes were treated with TCDD and Gln for 48 h. Then cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC), total glutathione (TGSH) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by liver micronucleus assay (MN) and 8-oxo-2-deoxyguanosine (8-OH-dG). The results of MTT and LDH assays showed that TCDD decreased cell viability but not L-glutamine. TCDD also increased TOS level in rat hepatocytes and significantly decreased TAC and TGSH levels. On the basis of increasing doses, the dioxin in a dose-dependent manner caused significant increases of micronucleated hepatocytes (MNHEPs) and 8-OH-dG as compared to control culture. Whereas, in cultures exposured with Gln alone, TOS levels were not changed and TAC and TGSH together were significantly increased in dose-dependent fashion. The presence of Gln with TCDD modulated the hepatotoxic effects of TCDD on primary hepatocytes cultures. Noteworthy, Gln has a protective effect against TCDD-mediated DNA damages. As conclusion, we reported here an increased potential therapeutic significance of L-glutamine in TCDD-mediated hepatic injury for the first time.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Mokhtar I. Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526 Egypt
| | - Kubra Celik
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Tulay O. Bakir
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
7
|
Affiliation(s)
- Milan Holecek
- Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Orman MA, Berthiaume F, Androulakis IP, Ierapetritou MG. Advanced stoichiometric analysis of metabolic networks of mammalian systems. Crit Rev Biomed Eng 2012; 39:511-34. [PMID: 22196224 DOI: 10.1615/critrevbiomedeng.v39.i6.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
9
|
Orman MA, Mattick J, Androulakis IP, Berthiaume F, Ierapetritou MG. Stoichiometry based steady-state hepatic flux analysis: computational and experimental aspects. Metabolites 2012; 2:268-91. [PMID: 24957379 PMCID: PMC3901202 DOI: 10.3390/metabo2010268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022] Open
Abstract
: The liver has many complex physiological functions, including lipid, protein and carbohydrate metabolism, as well as bile and urea production. It detoxifies toxic substances and medicinal products. It also plays a key role in the onset and maintenance of abnormal metabolic patterns associated with various disease states, such as burns, infections and major traumas. Liver cells have been commonly used in in vitro experiments to elucidate the toxic effects of drugs and metabolic changes caused by aberrant metabolic conditions, and to improve the functions of existing systems, such as bioartificial liver. More recently, isolated liver perfusion systems have been increasingly used to characterize intrinsic metabolic changes in the liver caused by various perturbations, including systemic injury, hepatotoxin exposure and warm ischemia. Metabolic engineering tools have been widely applied to these systems to identify metabolic flux distributions using metabolic flux analysis or flux balance analysis and to characterize the topology of the networks using metabolic pathway analysis. In this context, hepatic metabolic models, together with experimental methodologies where hepatocytes or perfused livers are mainly investigated, are described in detail in this review. The challenges and opportunities are also discussed extensively.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - John Mattick
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi G Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Türkez H, Geyikoğlu F, Yousef MI. Modulatory effect of l-glutamine on 2,3,7,8 tetrachlorodibenzo-p-dioxin-induced liver injury in rats. Toxicol Ind Health 2011; 28:663-72. [DOI: 10.1177/0748233711420474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to explore the effectiveness of l-glutamine (Gln) in alleviating the toxicity of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) in liver of rats. Rats were intraperitoneally administered Gln and TCDD doses daily for 21 days. In the liver of rats, the biochemical tests, pathological examination and micronucleus (MN) test were performed. TCDD significantly decreased the activities of antioxidant enzymes and serious pathological findings. Moreover, the rate of MNs in hepatocytes increased after treatment with dioxin. In rats treated with Gln alone, the MNs remained unchanged, but the ratio of glutathione (GSH) and the activity of glutathione peroxidase (GSH-Px) were significantly increased. Gln also prevented the suppression of GSH-Px (except for superoxide dismutase and catalase) and GSH in the livers of animals exposed to TCDD and displayed a strong protective effect against MNs. Thus, our findings for Gln might provide new insight into the development of therapeutic and preventive approaches in TCDD toxicity.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey
| | | | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|