1
|
Murray JS. Dichotomy in TCR V-domain dynamics binding the opposed inclined planes of pMHC-II and pMHC-I α-helices. Mol Immunol 2023; 162:111-124. [PMID: 37677988 DOI: 10.1016/j.molimm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 09/09/2023]
Abstract
Ligand recognition by the human α/β T-cell antigen receptor (TCR) heterodimer protein, unlike the surface immunoglobulin (sIg) B-cell receptor, is not governed by relative binding affinity. Its interaction with the peptide (p) plus major histocompatibility complex (MHC) protein (abbrev. pMHC) likely involves some different molecular mechanism linking pMHC binding to T-cell functions. Recent analytical geometry of TCR:pMHC-II solved crystallographic structures (n = 40) revealed that each variable (V)-domain is bound in similar, yet mathematically unique orientations to its target pMHC groove. The relative position of the central cysteine of each V-domain was examined by multivariable calculus in spherical coordinates, where a simple volume element (dV) was found to describe clonotypic geometry with pMHC-II. Here, the study was expanded to include TCR:pMHC-I structures, and to model a physical mechanism, specifically involving the two directionally opposed inclined planes (IP) manifest by the two major α-helices prominent in both MHC-I and MHC-II proteins. Calculations for rotational torque of each V-domain, together with acceleration up and down the slopes of both MHC α-helices were used to estimate the time a given V-domain spends sliding down its cognate MHC IP. This V-domain rotation/sliding mechanism appears to be quantitatively unique for each TCR:pMHC V-domain (n = 40). However, there is an apparent and common dichotomy between the mobility of each V-domain with respect to the two classes of MHC proteins. Evolutionary motifs in the MHC helices support that the V-domains negotiate the opposed inclined planes of pMHC ligands in clonotypic fashion. Thus, this model is useful in understanding how mechanical forces are linked to TCR function.
Collapse
|
2
|
Anderson JS, LeMaster DM, Hernández G. Transient conformations in the unliganded FK506 binding domain of FKBP51 correspond to two distinct inhibitor-bound states. J Biol Chem 2023; 299:105159. [PMID: 37579948 PMCID: PMC10514456 DOI: 10.1016/j.jbc.2023.105159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Members of the FK506-binding protein (FKBP) family regulate a range of important physiological processes. Unfortunately, current therapeutics such as FK506 and rapamycin exhibit only modest selectivity among these functionally distinct proteins. Recent progress in developing selective inhibitors has been reported for FKBP51 and FKBP52, which act as mutual antagonists in the regulation of steroid hormone signaling. Two structurally similar inhibitors yield distinct protein conformations at the binding site. Localized conformational transition in the binding site of the unliganded FK1 domain of FKBP51 is suppressed by a K58T mutation that also suppresses the binding of these inhibitors. Here, it is shown that the changes in amide hydrogen exchange kinetics arising from this K58T substitution are largely localized to this structural region. Accurate determination of the hydroxide-catalyzed exchange rate constants in both the wildtype and K58T variant proteins impose strong constraints upon the pattern of amide exchange reactivities within either a single or a pair of transient conformations that could give rise to the differences between these two sets of measured rate constants. Poisson-Boltzmann continuum dielectric calculations provide moderately accurate predictions of the structure-dependent hydrogen exchange reactivity for solvent-exposed protein backbone amides. Applying such calculations to the local protein conformations observed in the two inhibitor-bound FKBP51 domains demonstrated that the experimentally determined exchange rate constants for the wildtype domain are robustly predicted by a population-weighted sum of the experimental hydrogen exchange reactivity of the K58T variant and the predicted exchange reactivities in model conformations derived from the two inhibitor-bound protein structures.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, New York, USA
| | - David M LeMaster
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Griselda Hernández
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.
| |
Collapse
|
3
|
TCR-pMHC: Envisioning the specialized dynamics of the target 5-component complex. Cell Mol Immunol 2022; 19:657-659. [DOI: 10.1038/s41423-022-00856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/08/2022] Open
|
4
|
CDR3 binding chemistry controls TCR V-domain rotational probability and germline CDR2 scanning of polymorphic MHC. Mol Immunol 2022; 144:138-151. [DOI: 10.1016/j.molimm.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022]
|
5
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
6
|
Murray JS. TCR-pMHC: may the force be of you? Cell Mol Immunol 2021; 18:1622-1623. [PMID: 33479416 PMCID: PMC8245527 DOI: 10.1038/s41423-021-00635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
|
7
|
Vammi V, Song G. Ensembles of a small number of conformations with relative populations. JOURNAL OF BIOMOLECULAR NMR 2015; 63:341-351. [PMID: 26474790 DOI: 10.1007/s10858-015-9993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
In our previous work, we proposed a new way to represent protein native states, using ensembles of a small number of conformations with relative Populations, or ESP in short. Using Ubiquitin as an example, we showed that using a small number of conformations could greatly reduce the potential of overfitting and assigning relative populations to protein ensembles could significantly improve their quality. To demonstrate that ESP indeed is an excellent alternative to represent protein native states, in this work we compare the quality of two ESP ensembles of Ubiquitin with several well-known regular ensembles or average structure representations. Extensive amount of significant experimental data are employed to achieve a thorough assessment. Our results demonstrate that ESP ensembles, though much smaller in size comparing to regular ensembles, perform equally or even better sometimes in all four different types of experimental data used in the assessment, namely, the residual dipolar couplings, residual chemical shift anisotropy, hydrogen exchange rates, and solution scattering profiles. This work further underlines the significance of having relative populations in describing the native states.
Collapse
Affiliation(s)
- Vijay Vammi
- Bioinformatics and Computational Biology Program, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA.
| | - Guang Song
- Bioinformatics and Computational Biology Program, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA
- Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Abstract
The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of total) which exchanges with the major conformation with a time constant of 3.0 s at 43°C. The largest differences in chemical shift occur for the 80′s loop that forms critical recognition interactions with many of the protein partners for the FKBP family. The residues exhibiting doubling extend into the adjacent strands of the β-sheet, across the active site to the α-helix and into the 50′s loop. Each of the seven proline residues adopts a trans-peptide linkage in both the major and minor conformations, indicating that this slow transition is not the result of prolyl isomerization. Many of the residues exhibiting resonance doubling also participate in conformational line-broadening transition(s) that occur ~105-fold more rapidly, proposed previously to arise from a single global process. The 1.70 Å (1 Å=0.1 nm) resolution X-ray structure of the H87V variant is strikingly similar to that of FKBP12, yet this substitution quenches the slow conformational transition throughout the protein while quenching the line-broadening transition for residues near the 80′s loop. Line-broadening was also decreased for the residues in the α-helix and 50′s loop, whereas line-broadening in the 40′s loop was unaffected. The K44V mutation selectively reduces the line-broadening in the 40′s loop, verifying that at least three distinct conformational transitions underlie the line-broadening processes of FKBP12.
Collapse
|
9
|
Mustafi SM, Chen H, Li H, Lemaster DM, Hernández G. Analysing the visible conformational substates of the FK506-binding protein FKBP12. Biochem J 2013; 453:371-380. [PMID: 23688288 DOI: 10.1042./bj20130276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of total) which exchanges with the major conformation with a time constant of 3.0 s at 43°C. The largest differences in chemical shift occur for the 80's loop that forms critical recognition interactions with many of the protein partners for the FKBP family. The residues exhibiting doubling extend into the adjacent strands of the β-sheet, across the active site to the α-helix and into the 50's loop. Each of the seven proline residues adopts a trans-peptide linkage in both the major and minor conformations, indicating that this slow transition is not the result of prolyl isomerization. Many of the residues exhibiting resonance doubling also participate in conformational line-broadening transition(s) that occur ~105-fold more rapidly, proposed previously to arise from a single global process. The 1.70 Å (1 Å=0.1 nm) resolution X-ray structure of the H87V variant is strikingly similar to that of FKBP12, yet this substitution quenches the slow conformational transition throughout the protein while quenching the line-broadening transition for residues near the 80's loop. Line-broadening was also decreased for the residues in the α-helix and 50's loop, whereas line-broadening in the 40's loop was unaffected. The K44V mutation selectively reduces the line-broadening in the 40's loop, verifying that at least three distinct conformational transitions underlie the line-broadening processes of FKBP12.
Collapse
Affiliation(s)
- Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
10
|
Anderson JS, Hernández G, LeMaster DM. Assessing the chemical accuracy of protein structures via peptide acidity. Biophys Chem 2012. [PMID: 23182463 DOI: 10.1016/j.bpc.2012.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, New York 12308, USA
| | | | | |
Collapse
|
11
|
Hernández G, Anderson JS, LeMaster DM. Experimentally assessing molecular dynamics sampling of the protein native state conformational distribution. Biophys Chem 2012; 163-164:21-34. [PMID: 22425325 DOI: 10.1016/j.bpc.2012.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 11/19/2022]
Abstract
The acute sensitivity to conformation exhibited by amide hydrogen exchange reactivity provides a valuable test for the physical accuracy of model ensembles developed to represent the Boltzmann distribution of the protein native state. A number of molecular dynamics studies of ubiquitin have predicted a well-populated transition in the tight turn immediately preceding the primary site of proteasome-directed polyubiquitylation Lys 48. Amide exchange reactivity analysis demonstrates that this transition is 10(3)-fold rarer than these predictions. More strikingly, for the most populated novel conformational basin predicted from a recent 1 ms MD simulation of bovine pancreatic trypsin inhibitor (at 13% of total), experimental hydrogen exchange data indicates a population below 10(-6). The most sophisticated efforts to directly incorporate experimental constraints into the derivation of model protein ensembles have been applied to ubiquitin, as illustrated by three recently deposited studies (PDB codes 2NR2, 2K39 and 2KOX2K392KOX). Utilizing the extensive set of experimental NOE constraints, each of these three ensembles yields a modestly more accurate prediction of the exchange rates for the highly exposed amides than does a standard unconstrained molecular simulation. However, for the less frequently exposed amide hydrogens, the 2NR2 ensemble offers no improvement in rate predictions as compared to the unconstrained MD ensemble. The other two NMR-constrained ensembles performed markedly worse, either underestimating (2KOX) or overestimating (2K39) the extent of conformational diversity.
Collapse
Affiliation(s)
- Griselda Hernández
- Wadsworth Center, New York State Department of Health, School of Public Health, University at Albany-SUNY, Empire State Plaza, Albany, NY 12201, USA
| | | | | |
Collapse
|
12
|
Hernández G, Anderson JS, Lemaster DM. Electrostatics of hydrogen exchange for analyzing protein flexibility. Methods Mol Biol 2012; 831:369-405. [PMID: 22167684 DOI: 10.1007/978-1-61779-480-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrostatic interactions at the protein-aqueous interface modulate the reactivity of solvent-exposed backbone amides by a factor of at least a billion fold. The brief (∼10 ps) lifetime of the peptide anion formed during the hydroxide-catalyzed exchange reaction helps enable the experimental rates to be robustly predictable by continuum dielectric methods. Since this ability to predict the structural dependence of exchange reactivity also applies to the protein amide hydrogens that are only rarely exposed to the bulk solvent phase, electrostatic analysis of the experimental exchange rates provides an effective assessment of whether a given model ensemble is consistent with the properly weighted Boltzmann conformational distribution of the protein native state.
Collapse
Affiliation(s)
- Griselda Hernández
- Department of Health and Department of Biomedical Sciences, Wadsworth Center, School of Public Health, University at Albany - SUNY, Albany, NY, USA
| | | | | |
Collapse
|
13
|
De Simone A, Dhulesia A, Soldi G, Vendruscolo M, Hsu STD, Chiti F, Dobson CM. Experimental free energy surfaces reveal the mechanisms of maintenance of protein solubility. Proc Natl Acad Sci U S A 2011; 108:21057-62. [PMID: 22160682 PMCID: PMC3248487 DOI: 10.1073/pnas.1112197108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The identification of the factors that enable normally folded proteins to remain in their soluble and functional states is crucial for a comprehensive understanding of any biological system. We have determined a series of energy landscapes of the acylphosphatase from Drosophila melanogaster under a variety of conditions by combining NMR measurements with restrained molecular dynamics simulations. We thus analyzed the differences in the structures, dynamics, and energy surfaces of the protein in its soluble state or in situations where it aggregates through conformational states that have native-like structure, folding stability, and enzymatic activity. The study identifies the nature of the energy barriers that under normal physiological conditions prevent the protein ensemble from populating dangerous aggregation-prone states. We found that such states, although similar to the native conformation, have altered surface charge distribution, alternative topologies of the β-sheet region, and modified solvent exposure of hydrophobic surfaces and aggregation-prone regions of the sequence. The identified barriers allow the protein to undergo functional dynamics while remaining soluble and without a significant risk of misfolding and aggregation into nonfunctional and potentially toxic species.
Collapse
Affiliation(s)
- Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dhulesia
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Gemma Soldi
- Department of Biological Sciences, University of Florence, 50134 Florence, Italy
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Shang-Te Danny Hsu
- Institute of Bioinformatics and Structural Biology National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; and
| | - Fabrizio Chiti
- Department of Biological Sciences, University of Florence, 50134 Florence, Italy
| | | |
Collapse
|