1
|
Galaxy Dnpatterntools for Computational Analysis of Nucleosome Positioning Sequence Patterns. Int J Mol Sci 2022; 23:ijms23094869. [PMID: 35563261 PMCID: PMC9102330 DOI: 10.3390/ijms23094869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/25/2023] Open
Abstract
Nucleosomes are basic units of DNA packing in eukaryotes. Their structure is well conserved from yeast to human and consists of the histone octamer core and 147 bp DNA wrapped around it. Nucleosomes are bound to a majority of the eukaryotic genomic DNA, including its regulatory regions. Hence, they also play a major role in gene regulation. For the latter, their precise positioning on DNA is essential. In the present paper, we describe Galaxy dnpatterntools—software package for nucleosome DNA sequence analysis and mapping. This software will be useful for computational biologists practitioners to conduct more profound studies of gene regulatory mechanisms.
Collapse
|
2
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
3
|
Pranckeviciene E, Hosid S, Liang N, Ioshikhes I. Nucleosome positioning sequence patterns as packing or regulatory. PLoS Comput Biol 2020; 16:e1007365. [PMID: 31986131 PMCID: PMC7004410 DOI: 10.1371/journal.pcbi.1007365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Nucleosome positioning DNA sequence patterns (NPS)-usually distributions of particular dinucleotides or other sequence elements in nucleosomal DNA-at least partially determine chromatin structure and arrangements of nucleosomes that in turn affect gene expression. Statistically, NPS are defined as oscillations of the dinucleotide periodicity of about 10 base pairs (bp) which reflects the double helix period. We compared the nucleosomal DNA patterns in mouse, human and yeast organisms and observed few distinctive patterns that can be termed as packing and regulatory referring to distinctive modes of chromatin function. For the first time the NPS patterns in nucleus accumbens cells (NAC) in mouse brain were characterized and compared to the patterns in human CD4+ and apoptotic lymphocyte cells and well studied patterns in yeast. The NPS patterns in human CD4+ cells and mouse brain cells had very high positive correlation. However, there was no correlation between them and patterns in human apoptotic lymphocyte cells and yeast, but the latter two were highly correlated with each other. By their dinucleotide arrangements the analyzed NPS patterns classified into stable canonical WW/SS (W = A or T and S = C or G dinucleotide) and less stable RR/YY (R = A or G and Y = C or T dinucleotide) patterns and anti-patterns. In the anti-patterns positioning of the dinucleotides is flipped compared to those in the regular patterns. Stable canonical WW/SS patterns and anti-patterns are ubiquitously observed in many organisms and they had high resemblance between yeast and human apoptotic cells. Less stable RR/YY patterns had higher positive correlation between mouse and normal human cells. Our analysis and evidence from scientific literature lead to idea that various distinct patterns in nucleosomal DNA can be related to the two roles of the chromatin: packing (WW/SS) and regulatory (RR/YY and "anti").
Collapse
Affiliation(s)
- Erinija Pranckeviciene
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- * E-mail: (EP); (II)
| | - Sergey Hosid
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nathan Liang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology (OISB), Ottawa, Ontario, Canada
- * E-mail: (EP); (II)
| |
Collapse
|
4
|
The implication of DNA bending energy for nucleosome positioning and sliding. Sci Rep 2018; 8:8853. [PMID: 29891930 PMCID: PMC5995830 DOI: 10.1038/s41598-018-27247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 11/24/2022] Open
Abstract
Nucleosome not only directly affects cellular processes, such as DNA replication, recombination, and transcription, but also severs as a fundamentally important target of epigenetic modifications. Our previous study indicated that the bending property of DNA is important in nucleosome formation, particularly in predicting the dyad positions of nucleosomes on a DNA segment. Here, we investigated the role of bending energy in nucleosome positioning and sliding in depth to decipher sequence-directed mechanism. The results show that bending energy is a good physical index to predict the free energy in the process of nucleosome reconstitution in vitro. Our data also imply that there are at least 20% of the nucleosomes in budding yeast do not adopt canonical positioning, in which underlying sequences wrapped around histones are structurally symmetric. We also revealed distinct patterns of bending energy profile for distinctly organized chromatin structures, such as well-positioned nucleosomes, fuzzy nucleosomes, and linker regions and discussed nucleosome sliding in terms of bending energy. We proposed that the stability of a nucleosome is positively correlated with the strength of the bending anisotropy of DNA segment, and both accessibility and directionality of nucleosome sliding is likely to be modulated by diverse patterns of DNA bending energy profile.
Collapse
|
5
|
Varzandian B, Ghaderi-Zefrehei M, Hosseinzadeh S, Sayyadi M, Taghadosi V, Varzandian S. An Investigation on the Expression Level of Interleukin 10 (IL-10) in the Healthy and Mastitic Holstein Cows and the Bioinformatics Analysis of Nucleosome Profile. Anim Biotechnol 2017; 28:294-300. [PMID: 28267404 DOI: 10.1080/10495398.2017.1283322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cytokines are immune regulators that play an essential role in regulating immune response against various infections. The present study focused on the possible association between the expression level of Interleukin 10 (IL-10) in blood and milk samples of 25 healthy and 25 mastitic cows in Fars province, Iran, using a quantitative real-time PCR assay. The experimental groups were categorized according to the number of calvings. The expression level of IL-10 was significantly higher in the blood and milk samples of mastitic cows compared to the healthy ones. Concomitant to increasing the number of calving, a numerical elevation in the expression of IL-10 in blood was observed (P < 0.05). The bioinformatics analysis of IL-10 gene revealed the promoter, exon-intron regions, and nucleosome profile. The nucleosome occupancy site was finally predicted using NUPOP software. Our result indicated that the promoter was not exactly placed in the nucleosome region, which was finally aimed to predict the position and expression of IL-10 gene in the mastitic cows.
Collapse
Affiliation(s)
- Bahareh Varzandian
- a Department of Animal Breeding, School of Agriculture , Yasouj University , Yasouj , Iran
| | | | - Saeid Hosseinzadeh
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Mostafa Sayyadi
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Vahideh Taghadosi
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Sara Varzandian
- c Department of Clinical Sciences, School of Veterinary Medicine, Kazerun Branch , Islamic Azad University , Kazerun , Iran
| |
Collapse
|
6
|
Meng H, Li H, Zheng Y, Yang Z, Jia Y, Bo S. Evolutionary analysis of nucleosome positioning sequences based on New Symmetric Relative Entropy. Genomics 2017; 110:154-161. [PMID: 28917635 DOI: 10.1016/j.ygeno.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
New Symmetric Relative Entropy (NSRE) was applied innovatively to analyze the nucleosome sequences in S. cerevisiae, S. pombe and Drosophila. NSRE distributions could well reflect the characteristic differences of nucleosome sequences among three organisms, and the differences indicate a concerted evolution in the sequence usage of nucleosome. Further analysis about the nucleosomes around TSS shows that the constitutive property of +1/-1 nucleosomes in S. cerevisiae is different from that in S. pombe and Drosophila, which indicates that S. cerevisiae has a different transcription regulation mechanism based on nucleosome. However, in either case, the nucleosome dyad region is conserved and always has a higher NSRE. Base composition analysis shows that this conservative property in nucleosome dyad region is mainly determined by base A and T, and the dependence degrees on base A and T are consistent in three organisms.
Collapse
Affiliation(s)
- Hu Meng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Yan Zheng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Zhenhua Yang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yun Jia
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Suling Bo
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Liu G, Xing Y, Zhao H, Wang J, Shang Y, Cai L. A deformation energy-based model for predicting nucleosome dyads and occupancy. Sci Rep 2016; 6:24133. [PMID: 27053067 PMCID: PMC4823781 DOI: 10.1038/srep24133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Nucleosome plays an essential role in various cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to decode the mechanism of nucleosome positioning and identify nucleosome positions in the genome. In this paper, we present a model for predicting nucleosome positioning based on DNA deformation, in which both bending and shearing of the nucleosomal DNA are considered. The model successfully predicted the dyad positions of nucleosomes assembled in vitro and the in vitro map of nucleosomes in Saccharomyces cerevisiae. Applying the model to Caenorhabditis elegans and Drosophila melanogaster, we achieved satisfactory results. Our data also show that shearing energy of nucleosomal DNA outperforms bending energy in nucleosome occupancy prediction and the ability to predict nucleosome dyad positions is attributed to bending energy that is associated with rotational positioning of nucleosomes.
Collapse
Affiliation(s)
- Guoqing Liu
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Yongqiang Xing
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hongyu Zhao
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jianying Wang
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,State Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yu Shang
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,College of Computer Science and Technology, Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
8
|
Abstract
Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.
Collapse
|
9
|
Flores O, Deniz Ö, Soler-López M, Orozco M. Fuzziness and noise in nucleosomal architecture. Nucleic Acids Res 2014; 42:4934-46. [PMID: 24586063 PMCID: PMC4005669 DOI: 10.1093/nar/gku165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleosome organization plays a key role in the regulation of gene expression. However, despite the striking advances in the accuracy of nucleosome maps, there are still severe discrepancies on individual nucleosome positioning and how this influences gene regulation. The variability among nucleosome maps, which precludes the fine analysis of nucleosome positioning, might emerge from diverse sources. We have carefully inspected the extrinsic factors that may induce diversity by the comparison of microccocal nuclease (MNase)-Seq derived nucleosome maps generated under distinct conditions. Furthermore, we have also explored the variation originated from intrinsic nucleosome dynamics by generating additional maps derived from cell cycle synchronized and asynchronous yeast cultures. Taken together, our study has enabled us to measure the effect of noise in nucleosome occupancy and positioning and provides insights into the underlying determinants. Furthermore, we present a systematic approach that may guide the standardization of MNase-Seq experiments in order to generate reproducible genome-wide nucleosome patterns.
Collapse
Affiliation(s)
- Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|