1
|
Klaczek CE, Saari GN, Veilleux HD, Mielewczyk DA, Goss GG, Glover CN. Acute waterborne strontium exposure to rainbow trout: Tissue accumulation, ionoregulatory effects, and the modifying influence of waterborne calcium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106125. [PMID: 35180453 DOI: 10.1016/j.aquatox.2022.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/26/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Flowback and produced water (FPW) is an end-product of the hydraulic fracturing method of oil and gas extraction that is highly enriched in alkaline earth metals such as strontium (Sr). While Sr concentrations in FPW can exceed toxic thresholds for fish, the accompanying high concentrations of calcium (Ca) in FPW may ameliorate any toxicity. In this study, Sr bioaccumulation and molecular, biochemical, and physiological changes in ionoregulatory endpoints were investigated in rainbow trout (Oncorhynchus mykiss). Exposures were conducted over a 96-h period at Sr concentrations ranging from 1.7 to 1948 µM, with effects at the highest Sr exposure concentration also separately examined in waters of varying Ca concentration (10 to 958 µM). Plasma and gill Sr burdens increased as a function of increasing waterborne Sr, and accumulation increased further as water Ca concentrations were lowered. Despite this, there was no consistent, dose-dependent effect of Sr on plasma or gill Ca concentrations, although impacts on plasma and branchial sodium (Na) concentrations were observed. Waterborne Sr significantly inhibited branchial Ca2+-ATPase activity, albeit only at the highest tested Sr concentration (1948 µM). In exposure treatments where Sr was highly elevated and water Ca was reduced, the hepatic gene expression of Ca signaling receptors β-2 adrenergic receptor (Adrb2) and inositol-1,4,5-triphosphate receptor-2 (Itpr2) were inhibited, highlighting novel potential pathways of Sr toxicity in rainbow trout. Overall, these data indicate that water Ca has a strong effect on Sr bioavailability, but over an acute exposure period there is limited evidence for an effect of Sr on Ca homeostasis. Although Sr is elevated in effluents associated with the oil and gas industry, the co-occurrence of high Ca concentrations might protect freshwater fish against acute effects related to Sr exposure.
Collapse
Affiliation(s)
- Chantelle E Klaczek
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin N Saari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Upper Midwest Environmental Science Center, United States Geological Survey, La Crosse, WI, United States
| | - Heather D Veilleux
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Diane A Mielewczyk
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Domínguez FJ, Pontigo JP, Oyarzún R, Vargas-Lagos C, Morera FJ, Vargas-Chacoff L. The expression pattern of calcium signaling-related genes during smoltification of Salmo salar in productive conditions. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:20-25. [PMID: 30772484 DOI: 10.1016/j.cbpb.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/31/2018] [Accepted: 02/07/2019] [Indexed: 11/30/2022]
Abstract
Variations in the mRNA expression of hepatic and muscle genes that are related to calcium signaling were analyzed by real-time qPCR in farmed Atlantic salmon (Salmo salar L. 1758) to determine changes in expression between parr and smolt stages. These organs were selected due to their close relationship with calcium signaling and metabolism (e.g., glycolysis, oxidative phosphorylation, muscle contraction). Differential expression between smolt and parr specimens and between organs was observed. Compared to parr specimens, smolts exhibited upregulated expression of the calcitonin receptor precursor, calcitonin receptor, calcitonin isoform, parathyroid hormone, and calmodulin in the liver. This pattern was inverse in muscle, with the exception of calmodulin, which was significantly upregulated in smolts compared to parr. Additionally, plasma calcium was decreased in the smolt condition. This study is the first to characterize the expression pattern of calcium signaling-related genes in the liver and muscle of parr and smolt S. salar. However, further functional studies are required to obtain a wider understanding about the physiological changes that accompany the productive conditions during smoltification.
Collapse
Affiliation(s)
- F J Domínguez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - F J Morera
- Applied Biochemistry Laboratory, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
3
|
Wacquier B, Voorsluijs V, Combettes L, Dupont G. Coding and decoding of oscillatory Ca 2+ signals. Semin Cell Dev Biol 2019; 94:11-19. [PMID: 30659886 DOI: 10.1016/j.semcdb.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valérie Voorsluijs
- Nonlinear Physical Chemistry Unit & Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
4
|
Aguilera L, Bergmann FT, Dalmasso G, Elmas S, Elsässer T, Großeholz R, Holzheu P, Kalra P, Kummer U, Sahle S, Veith N. Robustness of frequency vs. amplitude coding of calcium oscillations during changing temperatures. Biophys Chem 2018; 245:17-24. [PMID: 30529877 DOI: 10.1016/j.bpc.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/02/2023]
Abstract
Intracellular calcium oscillations have been widely studied. It is assumed that information is conveyed in the frequency, amplitude and shape of these oscillations. In particular, calcium signalling in mammalian liver cells has repeatedly been reported to display frequency coding so that an increasing amount of stimulus is translated into an increasing frequency of the oscillations. However, recently, we have shown that calcium oscillations in fish liver cells rather exhibit amplitude coding with increasing stimuli being translated into increasing amplitudes. Practical consequences of this difference are unknown so far. Here we investigated advantages and disadvantages of frequency vs. amplitude coding, in particular in environments with substantially changing temperatures (e.g. 10-20 degrees). For this purpose, we use computational modelling and a new approach to generate a calcium model exactly displaying a specific frequency and/or amplitude. We conclude that despite the advantages in flexibility that frequencies might offer for the transmission of information in the cell, amplitude coding is obviously more robust with respect to changes in environmental temperatures. This potentially explains the observed differences between two classes of organisms, one operating at constant temperatures whereas the other is not.
Collapse
Affiliation(s)
- Luis Aguilera
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| | | | | | - Sinan Elmas
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| | | | - Ruth Großeholz
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| | - Pascal Holzheu
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| | - Priyata Kalra
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| | - Ursula Kummer
- BioQuant/COS, Heidelberg University, Heidelberg, Germany.
| | - Sven Sahle
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| | - Nadine Veith
- BioQuant/COS, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
Ca
2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca
2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca
2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca
2+ are controlled not only by the frequency of Ca
2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca
2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca
2+ oscillations. The main characteristics of the Ca
2+ exchange fluxes with these compartments are also reviewed.
Collapse
Affiliation(s)
- Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Combettes
- Interactions Cellulaires et Physiopathologie Hépatique, UMR-S 1174, Université Paris Sud, Orsay, France
| |
Collapse
|
6
|
Dupont G. Modeling the intracellular organization of calcium signaling. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:227-37. [PMID: 24604723 DOI: 10.1002/wsbm.1261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 12/29/2022]
Abstract
Calcium (Ca²⁺) is a key signaling ion that plays a fundamental role in many cellular processes in most types of tissues and organisms. The versatility of this signaling pathway is remarkable. Depending on the cell type and the stimulus, intracellular Ca²⁺ increases can last over different periods, as short spikes or more sustained signals. From a spatial point of view, they can be localized or invade the whole cell. Such a richness of behaviors is possible thanks to numerous exchange processes with the external medium or internal Ca²⁺ pools, mainly the endoplasmic or sarcoplasmic reticulum and mitochondria. These fluxes are also highly regulated. In order to get an accurate description of the spatiotemporal organization of Ca²⁺ signaling, it is useful to resort to modeling. Thus, each flux can be described by an appropriate kinetic expression. Ca²⁺ dynamics in a given cell type can then be simulated by a modular approach, consisting of the assembly of computational descriptions of the appropriate fluxes and regulations. Modeling can also be used to get insight into the mechanisms of decoding of the Ca²⁺ signals responsible for cellular responses. Cells can use frequency or amplitude coding, as well as take profit of Ca²⁺ oscillations to increase their sensitivity to small average Ca²⁺ increases.
Collapse
Affiliation(s)
- Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
7
|
Long-term storage and impedance-based water toxicity testing capabilities of fluidic biochips seeded with RTgill-W1 cells. Toxicol In Vitro 2012; 26:736-45. [DOI: 10.1016/j.tiv.2012.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/07/2012] [Accepted: 03/16/2012] [Indexed: 12/19/2022]
|