1
|
Judd KD, Parsons SW, Majumder T, Dawlaty JM. Electrostatics, Hydration, and Chemical Equilibria at Charged Monolayers on Water. Chem Rev 2025. [PMID: 39933097 DOI: 10.1021/acs.chemrev.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The chemistry and physics of soft matter interfaces, especially aqueous-organic interfaces, are centrally important to many areas of science and technology. Often, the thermodynamics, kinetics, and selectivity of reactions are modified at interfaces. Here, we review the electrostatics and hydration at charged monolayers on water and their influence on interfacial chemical equilibria. First, we provide an understanding of interfaces as a conceptual continuation of the solvation shell of small molecules, along with recent relevant experimental work. Then, we provide a summary of models for describing the electrostatics of aqueous interfaces. While we will discuss a range of new developments, our focus will be on systems where the electrostatics of the surface is controllable by the choice of relatively simple insoluble surfactants. New insights into the molecular structure of the double layer, with particular attention on the knowledge gained from spectroscopy will be reviewed. Our approach is to familiarize the reader with simple models, followed by discussion of models with further complexity for explaining interfacial phenomena. Experiments that test the limits of such models will also be discussed. Finally, we will provide an outlook on engineering the interfacial environment for tailored reactivity, along with the anticipated experimental advancements and potentials impacts.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Sean W Parsons
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Rezaie F, Kowsari MH. Capturing the Effect of Anion Type on the Intermolecular Interactions between Water and Imidazolium-Based Ionic Liquids: A Comparative DFT Study. J Phys Chem B 2025; 129:1343-1359. [PMID: 39836764 DOI: 10.1021/acs.jpcb.4c06749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The studies on ionic liquids (ILs) and their interaction with different solvents have always been an interesting topic for experimental and computational chemists. Recently, however, deep insights on the molecular structures of the IL-water binary mixtures have been mainly performed through classical simulations. Here, a comprehensive quantum mechanical study is presented on seven 1-butyl-3-methylimidazolium-based ILs in the absence and presence of water. As the most important intermolecular interaction between ionic moieties of ILs and water molecules, hydrogen bonding is studied through different bonding analyses. The effect of different anions, [NO3]-, [HSO4]-, [SCN]-, [DCA]-, [BF4]-, [PF6]-, and [NTf2]-, on the behavior of ILs interacting with a sample of water molecules is investigated. Comparing the implicit and explicit approaches to consider water solvent indicated that the structure of ILs in the solvent depends on the selected solvent model. By considering explicit water molecules, we analyzed the intermolecular interactions between ILs and the water sample. The energy decomposition analysis indicated that the stability of the IL···water systems is mainly due to the electrostatic component of the total interaction energy. The interaction region indicator (IRI) analysis discovered that chemical bond and van der Waals (vdW) interactions are important in the IL···water systems. Indeed, investigation of each ion/ion pair surrounded by ten nearest neighbor water molecules discovered that the vdW interactions are responsible for the cation···anion and the cation···water interactions, while chemical bonding is important in the anion···water and the water···water interactions. Therefore, the anion···water interaction requires further analysis. The quantum theory of atoms in molecules verified the ionic nature of the H-bond in the anion···water interaction. The IRI analysis showed that the interaction between water molecules and cyano-based anions, [SCN]- and [DCA]-, is only due to chemical bonding, while in the oxygenated anions, [NO3]- and [HSO4]-, the vdW forces are also important. For the other anions, [BF4]-, [PF6]-, and [NTf2]-, the vdW forces have the main contribution in the anion···water interaction. Natural bond orbital analysis indicated that these intermolecular interactions originate from nanion → σO-H* electron transfer. Finally, the law of matching water affinity (LMWA) using energy-based parameters was used to predict the hydrophilicity of ILs as follows: [BMIM][NO3] > [BMIM][SCN] > [BMIM][DCA] > [BMIM][HSO4] > [BMIM][BF4] > [BMIM][NTf2] > [BMIM][PF6]. Results obtained in the current work give insights into the electronic nature of intermolecular interactions between ILs and water molecules, which is necessary due to importance of water in modifying properties of ILs in various applications.
Collapse
Affiliation(s)
- Forough Rezaie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
3
|
Kolesnikov ES, Xiong Y, Onufriev AV. Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA. J Chem Theory Comput 2024; 20:8724-8739. [PMID: 39283928 PMCID: PMC11465471 DOI: 10.1021/acs.jctc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
The ion atmosphere surrounding highly charged biomolecules, such as nucleic acids, is crucial for their dynamics, structure, and interactions. Here, we develop an approach for the explicit treatment of ions within an implicit solvent framework suitable for atomistic simulations of biomolecules. The proposed implicit solvent/explicit ions model, GBION, is based on a modified generalized Born (GB) model; it includes separate, modified GB terms for solute-ion and ion-ion interactions. The model is implemented in the AMBER package (version 24), and its performance is thoroughly investigated in atomistic molecular dynamics (MD) simulations of double-stranded DNA on a microsecond time scale. The aggregate characteristics of monovalent (Na+ and K+) and trivalent (Cobalt Hexammine, CoHex3+) counterion distributions around double-stranded DNA predicted by the model are in reasonable agreement with the experiment (where available), all-atom explicit water MD simulations, and the expectation from the Manning condensation theory. The radial distributions of monovalent cations around DNA are reasonably close to the ones obtained using the explicit water model: expressed in units of energy, the maximum deviations of local ion concentrations from the explicit solvent reference are within 1 kBT, comparable to the corresponding deviations expected between different established explicit water models. The proposed GBION model is able to simulate DNA fragments in a large volume of solvent with explicit ions with little additional computational overhead compared with the fully implicit GB treatment of ions. Ions simulated using the developed model explore conformational space at least 2 orders of magnitude faster than in the explicit solvent. These advantages allowed us to observe and explore an unexpected "stacking" mode of DNA condensation in the presence of trivalent counterions (CoHex3+) that was revealed by recent experiments.
Collapse
Affiliation(s)
- Egor S. Kolesnikov
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yeyue Xiong
- Department
of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alexey V. Onufriev
- Departments
of Computer Science and Physics, Center for Soft Matter and Biological
Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Antipov A, Okorokova N, Mordkovich N, Safonova T, Veiko V. Role of phosphate-coordinating arginine residues in the thermal stability of uridine phosphorylase from Shewanella oneidensis MR-1. Biochimie 2024; 225:19-25. [PMID: 38723939 DOI: 10.1016/j.biochi.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
The role of phosphate-coordinating arginine residues in the thermal stability of uridine phosphorylase from Shewanella oneidensis MR-1 was investigated by mutation analysis. Uridine phosphorylase mutant genes were constructed by site-directed mutagenesis. The enzyme mutants were prepared and isolated, and their kinetic parameters were determined. It was shown that all these arginine residues play an important role both in the catalysis and thermal stability. The arginine residues 176 were demonstrated to form a kind of a phosphate pore in the hexameric structure of uridine phosphorylase, and they not only contribute to thermal stabilization of the enzyme but also have a regulatory function. The replacement of arginine 176 with an alanine residue resulted in a significant decrease in the kinetic stability of the enzyme but led to a twofold increase in its specific activity.
Collapse
Affiliation(s)
- Alexey Antipov
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia.
| | - Natalya Okorokova
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| | - Nadezhda Mordkovich
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| | - Tatyana Safonova
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| | - Vladimir Veiko
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| |
Collapse
|
5
|
Bardaud JX, Hayakawa Y, Takayanagi H, Hirata K, Ishiuchi SI, Fujii M, Gloaguen E. Water-Induced Dissociative Mechanism of Carboxylate and Divalent Calcium Ions Revealed by IR Laser Spectroscopy. J Phys Chem Lett 2024; 15:9295-9300. [PMID: 39235303 DOI: 10.1021/acs.jpclett.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The dissociation of carboxylate and divalent calcium ions is investigated at the molecular level in microsolvation experiments by gradually increasing the number of water molecules around the ions. IR photodissociation (IRPD) laser spectroscopy of H2-tagged (Ca2+, AcO-)(H2O)n=8-21 clusters in the ν(CO2-) spectral range combined with RI-B97-D3-BJ-abc/TZVPPD frequency calculations is used to identify the type of ion pairs involved in this process. These results reveal that the ion dissociation follows a multistep mechanism involving in particular pseudobridged monodentate contact ion pairs (CIPs), which are found to be the first intermediate species formed from bidentate CIPs along the ion dissociation path. Altogether, structural assignments suggest a sequence of simple reactions in the first coordination shell of the carboxylate group, leading us to propose two possible dissociation paths. The appearance threshold of monodentate structures is measured at n = 10, with that of solvent-shared ion pairs (SIPs) being potentially at n = 18. By showing in detail how solvation progressively takes over from the ionic interaction in shaping these supramolecular structures, this study can serve as a reference for solving ion-pairing/dissociation problems.
Collapse
Affiliation(s)
- Jean-Xavier Bardaud
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91400 Orsay, France
| | - Yurika Hayakawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hikaru Takayanagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shun-Ichi Ishiuchi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- IRFI/IPWR, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- IRFI/IPWR, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Eric Gloaguen
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91400 Orsay, France
| |
Collapse
|
6
|
Han Q, Veríssimo NVP, Bryant SJ, Martin AV, Huang Y, Pereira JFB, Santos-Ebinuma VC, Zhai J, Bryant G, Drummond CJ, Greaves TL. Scattering approaches to unravel protein solution behaviors in ionic liquids and deep eutectic solvents: From basic principles to recent developments. Adv Colloid Interface Sci 2024; 331:103242. [PMID: 38964196 DOI: 10.1016/j.cis.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nathalia V P Veríssimo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew V Martin
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuhong Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jorge F B Pereira
- Univ Coimbra, CERES, Department of Chemical Engineering, Pólo II - Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Valéria C Santos-Ebinuma
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
Volta TT, Walters SN, Martin CR. Potentiometric Studies on Ion-Transport Selectivity in Charged Gold Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1209. [PMID: 39057885 PMCID: PMC11280230 DOI: 10.3390/nano14141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Under ideal conditions, nanotubes with a fixed negative tube-wall charge will reject anions and transport-only cations. Because many proposed nanofluidic devices are optimized in this ideally cation-permselective state, it is important to know the experimental conditions that produce ideal responses. A parameter called Ccrit, the highest salt concentration in a contacting solution that still produces ideal cation permselectivity, is of particular importance. Pioneering potentiometric studies on gold nanotubes were interpreted using an electrostatic model that states that Ccrit should occur when the Debye length in the contacting salt solution becomes equivalent to the tube radius. Since this "double-layer overlap model" (DLOM), treats all same-charge ions as identical point charges, it predicts that all same-charged cations should produce the same Ccrit. However, the effect of cation on Ccrit in gold nanotubes was never investigated. This knowledge gap has become important because recent studies with a polymeric cation-permselective nanopore membrane showed that DLOM failed for every cation studied. To resolve this issue, we conducted potentiometric studies on the effect of salt cation on Ccrit for a 10 nm diameter gold nanotube membrane. Ccrit for all cations studied were, within experimental error, the same and identical, with values predicted by DLOM. The reason DLOM prevailed for the gold nanotubes but failed for the polymeric nanopores stems from the chemical difference between the fixed negative charges of these two membranes.
Collapse
Affiliation(s)
| | | | - Charles R. Martin
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
8
|
Hribar-Lee B, Lukšič M. Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Annu Rev Biophys 2024; 53:1-18. [PMID: 37906740 DOI: 10.1146/annurev-biophys-030722-111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Protein-protein association and aggregation are fundamental processes that play critical roles in various biological phenomena, from cellular signaling to disease progression. Understanding the underlying biophysical principles governing these processes is crucial for elucidating their mechanisms and developing strategies for therapeutic intervention. In this review, we provide an overview of recent experimental studies focused on protein-protein association and aggregation. We explore the key biophysical factors that influence these processes, including protein structure, conformational dynamics, and intermolecular interactions. We discuss the effects of environmental conditions such as temperature, pH and related buffer-specific effects, and ionic strength and related ion-specific effects on protein aggregation. The effects of polymer crowders and sugars are also addressed. We list the techniques used to study aggregation. We analyze emerging trends and challenges in the field, including the development of computational models and the integration of multidisciplinary approaches for a comprehensive understanding of protein-protein association and aggregation.
Collapse
Affiliation(s)
- Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia;
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia;
| |
Collapse
|
9
|
Friesen S, Kruchinin SE, Fedotova MV, Buchner R. Cation-Binding of Glutamate in Aqueous Solution. J Phys Chem B 2024; 128:5746-5755. [PMID: 38832643 PMCID: PMC11182346 DOI: 10.1021/acs.jpcb.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Interactions of the cations Li+, Na+, Mg2+, and Ca2+ with L-glutamate (Glu-) in aqueous solution were studied at room temperature with dielectric relaxation spectroscopy in the gigahertz region. Spectra of ∼0.4 M NaGlu with added LiCl, NaCl, MgCl2, or CaCl2 (c(MCln) ≤ 1.5 M) were evaluated and experiments supplemented by density functional theory and 3D reference interaction site model (3D-RISM) calculations. In addition to the modes found for aqueous NaGlu, namely, the reorientation of free Glu- ions (peaking at ∼1.6 GHz), of moderately retarded H2O molecules hydrating the carboxylate moieties of Glu- (∼8.4 GHz), of the cooperative resettling of the H-bond network of bulk water (∼20 GHz), and its preceding fast H-bond flip (∼400 GHz), an additional low-frequency relaxation at ∼0.4 GHz was detected upon the addition of the four salts. In the case of NaGlu + MgCl2(aq) and NaGlu + CaCl2(aq), this mode could be unequivocally assigned to an ion pair formed by the cation and the side-chain carboxylate moiety of Glu-. For NaGlu + LiCl(aq), either this species or a backbone-[Li+-H2O-Cl--Glu-] triple ion is formed. Binding constants increase in the order Li+
Collapse
Affiliation(s)
- Sergej Friesen
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany
| | - Sergey E. Kruchinin
- G.
A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo 153045, Russian Federation
| | - Marina V. Fedotova
- G.
A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo 153045, Russian Federation
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany
| |
Collapse
|
10
|
Volta TT, Walters SN, Martin CR. Effect of Organic Cation Adsorption on Ion-Transport Selectivity in a Cation-Permselective Nanopore Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10825-10833. [PMID: 38700247 DOI: 10.1021/acs.langmuir.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A key knowledge gap in the emerging field of nanofluidics concerns how the ionic composition and ion-transport properties of a nanoconfined solution differ from those of a contacting bulk solution. We and others have been using potentiometric concentration cells, where a nanopore or nanotube membrane separates salt solutions of differing concentrations to explore this issue. The membranes studied contained a fixed pore/tube wall anionic charge, which ideally would prohibit anions and salt from entering the pore/tube-confined solution. We have been investigating experimental conditions that allow for this ideally permselective cation state to be achieved. Results of potentiometric investigations of a polymeric nanopore membrane (10 ± 2 nm-diameter pores) with anionic charge due to carbonate are presented here. While studies of this type have been reported using alkaline metal and alkaline earth cations, there have been no analogous studies using organic cations. This paper uses a homologous series of tetraalkylammonium ions to address this knowledge gap. The key result is that, in contrast to the inorganic cations, the ideal cation-permselective state could not be obtained under any experimental conditions for the organic cations. We propose that this is because these hydrophobic cations adsorb onto the polymeric pore walls. This makes ideality impossible because each adsorbed alkylammonium must bring a charge-balancing anion, Cl-, with it into the nanopore solution. The alkylammonium adsorption that occurred was confirmed and quantified by using surface contact angle measurements.
Collapse
Affiliation(s)
- Thomas T Volta
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Stevie N Walters
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Charles R Martin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
11
|
Zhang C, Jerschow A. Range and sensitivity of 17O nuclear spin-lattice relaxation as a probe of aqueous electrolyte dynamics. J Chem Phys 2024; 160:154501. [PMID: 38624124 DOI: 10.1063/5.0196494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
The study of electrolytic solutions is of relevance in many research fields, ranging from biophysics, materials, and colloid science to catalysis and electrochemistry. The dependence of solution dynamics on the nature of electrolytes and their concentrations has been the subject of many experimental and computational studies, yet it remains challenging to obtain a full understanding of the factors that govern solution behavior. Here, we provide additional insights into the behavior of aqueous solutions of alkali chlorides by combining 17O relaxation data with diffusion and viscosity data and contrast their behavior with 1H nuclear magnetic resonance relaxation data. The main findings are that 17O relaxation correlates well with viscosity data but not with diffusion data, while 1H relaxation correlates with neither. Certain ionic trends match known ion-specific series behavior, especially at high concentrations. Notably, we also examine the ranges of the interactions and conclude that the majority of the effects are tied to local water reorientation dynamics.
Collapse
Affiliation(s)
- Chengtong Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| |
Collapse
|
12
|
G Lopez C, Matsumoto A, Shen AQ. Dilute polyelectrolyte solutions: recent progress and open questions. SOFT MATTER 2024; 20:2635-2687. [PMID: 38427030 DOI: 10.1039/d3sm00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are significantly different from those of electrically neutral polymers. The aim of this article is to highlight key results and some outstanding questions in the polyelectrolyte research from recent literature. We focus on the influence of electrostatics on conformational and hydrodynamic properties of polyelectrolyte chains. A compilation of experimental results from the literature reveals significant disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude this review by listing some key research challenges in order to fully understand the conformation and dynamics of polyelectrolytes in solutions.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
13
|
Brown SJ, Ryan TM, Drummond CJ, Greaves TL, Han Q. Lysozyme aggregation and unfolding in ionic liquid solvents: Insights from small angle X-ray scattering and high throughput screening. J Colloid Interface Sci 2024; 655:133-144. [PMID: 37931553 DOI: 10.1016/j.jcis.2023.10.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Understanding protein behaviour is crucial for developing functional solvent systems. Ionic liquids (ILs) are designer salts with versatile ion combinations, where some suppress unfavourable protein behaviour. This work utilizes small angle X-ray scattering (SAXS) to investigate the size and shape changes of model protein hen egg white lysozyme (HEWL) in 137 IL and salt solutions. Guinier, Kratky, and pair distance distribution analysis were used to evaluate the protein size, shape, and aggregation changes in these solvents. At low IL and salt concentration (1 mol%), HEWL remained monodispersed and globular. Most ILs increased HEWL size compared to buffer, while the nitrate and mesylate anions induced the most significant size increases. IL cation branching, hydroxyl groups, and longer alkyl chains counteracted this size increase. Common salts exhibited specific ion effects, while the IL effect varied with concentration due to complex ion-pairing. Protein aggregation and unfolding occurred at 10 mol% IL, altering the protein shape, especially for ILs with multiple alkyl chains on the cation, or with a mesylate/nitrate anion. This study highlights the usefulness of adopting a high-throughput SAXS strategy for understanding IL effects on protein behaviour and provides insights on controlling protein aggregation and unfolding with ILs.
Collapse
Affiliation(s)
- Stuart J Brown
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Timothy M Ryan
- SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
Ghaffari R, Arumughan V, Larsson A. Specific ion effects on lignin adsorption and transport through cellulose confinements. J Colloid Interface Sci 2024; 653:1662-1670. [PMID: 37812842 DOI: 10.1016/j.jcis.2023.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The presence of ions in a solution is anticipated to induce distinct effects on macromolecules. Consequently, the tuning of adsorption and mass transfer of lignin molecules can be achieved by incorporating ions with chaotropic or kosmotropic characteristics. This study examines the adsorption and mass transfer behavior of lignin molecules across model cellulose membranes in presence of ions from the Hofmeister series. Experimental investigations encompassed the use of diffusion cells to quantify lignin's mass transfer through the membranes, and quartz crystal microbalance with dissipation (QCM-D) monitoring was used for adsorption studies. Notably, at high ion concentrations, the mass transport rate of lignin was observed to be lower in the presence of highly hydrated (kosmotropic) sulfate ions, conforming to the Hofmeister series. Intriguingly, this relationship was not apparent at lower ion concentrations. Furthermore, QCM-D experiments indicated that lignin displayed higher adsorption onto the cellulose surface when exposed to less hydrated (chaotropic) nitrate anions. This behavior can be rationalized by considering the system's increased entropy gain, facilitated by the release of adsorbed ions and water molecules from the cellulose surface upon lignin adsorption. This study highlights the complexity of ion-specific effects on mass transfer and adsorption processes and their dependency on ion concentrations.
Collapse
Affiliation(s)
- Roujin Ghaffari
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Vishnu Arumughan
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden; FibRe - Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
15
|
Galindo C, Teope RV, Tarabeih L, Ben Ishai P, Feldman Y. Microwave Dielectric Relaxation of Univalent and Bivalent Electrolyte Solutions. J Phys Chem B 2023; 127:10003-10015. [PMID: 37963828 DOI: 10.1021/acs.jpcb.3c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The microwave dielectric relaxation of aqueous solutions of univalent (KCl, NaCl, NaI) and bivalent (CaCl2, MgCl2) electrolytes at concentrations between 0.1 and 1 M at 25 °C was investigated using a vector network analyzer (0.5≤ ν ≤ 40 GHz). The spectra of these electrolyte systems are characterized by a symmetrical broadening of the main relaxation peak and were fitted using the Cole-Cole equation. In our analysis, we provide insights into the underlying physics of the relaxation events at microscopic and mesoscopic scales by using a 3D phase space trajectory that is based on the interactions of the relaxing dipole units with their surroundings and Frohlich's B function. The effect of the solutes on the H-bond network of water with increasing concentration is evident in the microwave dielectric spectra through decreasing dielectric strengths and relaxation times. It was found that the number of perturbed water molecules is higher in the case of bivalent electrolytes and appears to be proportional to the ionic radius. In our approach, the particular dependence between the broadening parameter α and the relaxation times τ reflects the rate of interactions between the elementary dipole units and their surroundings. We provide a quantitative analysis of the level of perturbation caused by the presence of ions in the hydrogen-bond network of water. It was found that the H-bonded network of water is highly perturbed in univalent systems compared to bivalent systems due to weaker bonded hydration shells. Finally, we found significant differences between the dielectric response of NaCl and NaI. The differences, originating in the counterions Cl- and I-, which are characterized by large ionic radii and consequently weaker electric fields in their vicinity, confirm that the effect of weakly hydrated ions should not be neglected in microwave dielectric spectra analysis.
Collapse
Affiliation(s)
- Cindy Galindo
- The Hebrew University of Jerusalem, Institute of Applied Physics, Jerusalem 9190401, Israel
| | - Rodolfo Victor Teope
- The Hebrew University of Jerusalem, Institute of Applied Physics, Jerusalem 9190401, Israel
| | - Lama Tarabeih
- The Hebrew University of Jerusalem, Institute of Applied Physics, Jerusalem 9190401, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, Kyriat Hamada St. 3, 40700 Ariel, Israel
| | - Yuri Feldman
- The Hebrew University of Jerusalem, Institute of Applied Physics, Jerusalem 9190401, Israel
| |
Collapse
|
16
|
Han Q, Su Y, Smith KM, Binns J, Drummond CJ, Darmanin C, Greaves TL. Probing ion-binding at a protein interface: Modulation of protein properties by ionic liquids. J Colloid Interface Sci 2023; 650:1393-1405. [PMID: 37480654 DOI: 10.1016/j.jcis.2023.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Ions are important to modulate protein properties, including solubility and stability, through specific ion effects. Ionic liquids (ILs) are designer salts with versatile ion combinations with great potential to control protein properties. Although protein-ion binding of common metals is well-known, the IL effect on proteins is not well understood. Here, we employ the model protein lysozyme in dilute and concentrated IL solutions to determine the specific ion binding effect on protein phase behaviour, activity, size and conformational change, aggregation and intermolecular interactions. A combination of spectroscopic techniques, activity assays, small-angle X-ray scattering, and crystallography highlights that ILs, particularly their anions, bind to specific sites in the protein hydration layer via polar contacts on charged, polar and aromatic residues. The specific ion binding can induce more flexible loop regions in lysozyme, while the ion binding in the bulk phase can be more dynamic in solution. Overall, the protein behaviour in ILs depends on the net effect of nonspecific interactions and specific ion binding. Compared to formate, the nitrate anion induced high protein solubility, low activity, elongated shape and aggregation, which is largely owing to its higher propensity for ion binding. These findings provide new insights into protein-IL binding interactions and using ILs to modulate protein properties.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuyu Su
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Kate M Smith
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia; Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Jack Binns
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
17
|
Rajabi M, Cabral JD, Saunderson S, Gould M, Ali MA. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Biomed Mater 2023; 18:065009. [PMID: 37699400 DOI: 10.1088/1748-605x/acf90a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
In the event of excessive damage to bone tissue, the self-healing process alone is not sufficient to restore bone integrity. Three-dimensional (3D) printing, as an advanced additive manufacturing technology, can create implantable bone scaffolds with accurate geometry and internal architecture, facilitating bone regeneration. This study aims to develop and optimise hydroxyapatite-polyethylene glycol diacrylate (HA-PEGDA) hydrogel inks for extrusion 3D printing of bone tissue scaffolds. Different concentrations of HA were mixed with PEGDA, and further incorporated with pluronic F127 (PF127) as a sacrificial carrier. PF127 provided good distribution of HA nanoparticle within the scaffolds and improved the rheological requirements of HA-PEGDA inks for extrusion 3D printing without significant reduction in the HA content after its removal. Higher printing pressures and printing rates were needed to generate the same strand diameter when using a higher HA content compared to a lower HA content. Scaffolds with excellent shape fidelity up to 75-layers and high resolution (∼200 µm) with uniform strands were fabricated. Increasing the HA content enhanced the compression strength and decreased the swelling degree and degradation rate of 3D printed HA-PEGDA scaffolds. In addition, the incorporation of HA improved the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs) onto the scaffolds. 3D printed scaffolds with 2 wt% HA promoted osteogenic differentiation of hBMSCs as confirmed by the expression of alkaline phosphatase activity and calcium deposition. Altogether, the developed HA-PEGDA hydrogel ink has promising potential as a scaffold material for bone tissue regeneration, with excellent shape fidelity and the ability to promote osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Mina Rajabi
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sarah Saunderson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
Ferreira LMB, Cardoso VMO, Dos Santos Pedriz I, Souza MPC, Ferreira NN, Chorilli M, Gremião MPD, Zucolotto V. Understanding mucus modulation behavior of chitosan oligomers and dextran sulfate combining light scattering and calorimetric observations. Carbohydr Polym 2023; 306:120613. [PMID: 36746564 DOI: 10.1016/j.carbpol.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
This study reports the fundamental understanding of mucus-modulatory strategies combining charged biopolymers with distinct molecular weights and surface charges. Here, key biophysical evidence supports that low-molecular-weight (Mw) polycation chitosan oligosaccharides (COSs) and high-Mw polyanion dextran sulfate (DS) exhibit distinct thermodynamic signatures upon interaction with mucin (MUC), the main protein of mucus. While the COS → MUC microcalorimetric titrations released ~14 kcal/mol and ~60 kcal/mol, the DS → MUC titrations released ~1200 and ~1450 kcal/mol at pH of 4.5 and 6.8, respectively. The MPT-2 titrations of COS → MUC and DS → MUC indicated a greater zeta potential variation at pH = 4.5 (relative variation = 815 % and 351 %, respectively) than at pH = 6.8 (relative variation = 282 % and 136 %, respectively). Further, the resultant binary (COS-MUC) and ternary (COS-DS-MUC) complexes showed opposite behavior (aggregation and charge inversion events) according to the pH environment. Most importantly, the results indicate that electrostatics could not be the driving force that governs COS-MUC interactions. To account for this finding, we proposed a two-level abstraction model. Macro features emerge collectively from individual interactions occurring at the molecular level. Therefore, to understand the outcomes of mucus modulatory strategy based on charged biopolymers it is necessary to integrate both visions into the same picture.
Collapse
Affiliation(s)
- Leonardo M B Ferreira
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | - Valéria M O Cardoso
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Igor Dos Santos Pedriz
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Maurício P C Souza
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Natália N Ferreira
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Maria P D Gremião
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| |
Collapse
|
19
|
Reynolds JG. Zavitsas’ model of aqueous NaF solution activities utilizing hydration numbers reported from Dielectric Relaxation spectroscopy. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Gao A, Remsing RC, Weeks JD. Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. J Phys Chem B 2023; 127:809-821. [PMID: 36669139 DOI: 10.1021/acs.jpcb.2c06988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, Beijing, China 100876
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - John D Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Hotton C, Ducouret G, Sirieix-Plénet J, Bizien T, Porcar L, Malikova N. Tuning Structure and Rheological Properties of Polyelectrolyte-Based Hydrogels through Counterion-Specific Effects. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Claire Hotton
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| | - Guylaine Ducouret
- Laboratory of Soft Matter Sciences and Engineering (SIMM), ESPCI Paris, PSL Research University, CNRS, F-75005Paris, France
| | - Juliette Sirieix-Plénet
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| | - Thomas Bizien
- Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin - BP 48, 91192Gif-sur-Yvette, CEDEX, France
| | - Lionel Porcar
- Large Scale Structures, Institut Laue Langevin, GrenobleF-38042, France
| | - Natalie Malikova
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| |
Collapse
|
22
|
Measurement and Correlation of Solubility of L–Tryptophan in Aqueous Solutions with a Wide Range of pH and Different Monovalent Counterions from 283.15 to 323.15 K. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Landorfa-Svalbe Z, Andersone-Ozola U, Ievinsh G. Type of Anion Largely Determines Salinity Tolerance in Four Rumex Species. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010092. [PMID: 36616221 PMCID: PMC9823408 DOI: 10.3390/plants12010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to compare the effect of various salts composed of different cations (Na+, K+) and anions (chloride, nitrate, nitrite) on growth, development and ion accumulation in three Rumex species with accessions from sea coast habitats (Rumex hydrolapathum, Rumex longifolius and Rumex maritimus) and Rumex confertus from an inland habitat. Plants were cultivated in soil in an experimental automated greenhouse during the autumn-winter season. Nitrite salts strongly inhibited growth of all Rumex species, but R. maritimus was the least sensitive. Negative effects of chloride salts were rather little-pronounced, but nitrates resulted in significant growth stimulation, plant growth and development. Effects of Na+ and K+ at the morphological level were relatively similar, but treatment with K+ salts resulted in both higher tissue electrolyte levels and proportion of senescent leaves, especially for chloride salts. Increases in tissue water content in leaves were associated with anion type, and were most pronounced in nitrate-treated plants, resulting in dilution of electrolyte concentration. At the morphological level, salinity responses of R. confertus and R. hydrolapathum were similar, but at the developmental and physiological level, R. hydrolapathum and R. maritimus showed more similar salinity effects. In conclusion, the salinity tolerance of all coastal Rumex species was high, but the inland species R. confertus was the least tolerant to salinity. Similarity in effects between Na+ and K+ could be related to the fact that surplus Na+ and K+ has similar fate (including mechanisms of uptake, translocation and compartmentation) in relatively salt-tolerant species. However, differences between various anions are most likely related to differences in physiological functions and metabolic fate of particular ions.
Collapse
|
24
|
Perturbative vibration of the coupled hydrogen-bond (O:H-O) in water. Adv Colloid Interface Sci 2022; 310:102809. [PMID: 36356480 DOI: 10.1016/j.cis.2022.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Perturbation Raman spectroscopy has underscored the hydrogen bond (O:H-O or HB) cooperativity and polarizability (HBCP) for water, which offers a proper parameter space for the performance of the HB and electrons in the energy-space-time domains. The OO repulsive coupling drives the O:H-O segmental length and energy to relax cooperatively upon perturbation. Mechanical compression shortens and stiffens the O:H nonbond while lengthens and softens the HO bond associated with polarization. However, electrification by an electric field or charge injection, or molecular undercoordination at a surface, relaxes the O:H-O in a contrasting way to the compression with derivation of the supersolid phase that is viscoelastic, less dense, thermally diffusive, and mechanically and thermally more stable. The HO bond exhibits negative thermal expansivity in the liquid and the ice-I phase while its length responds in proportional to temperature in the quasisolid phase. The O:H-O relaxation modifies the mass densities, phase boundaries, critical temperatures and the polarization endows the slipperiness of ice and superfluidity of water at the nanometer scale. Protons injection by acid solvation creates the H↔H anti-HB and introduction of electron lone pairs derives the O:⇔:O super-HB into the solutions of base or H2O2 hydrogen-peroxide. The repulsive H↔H and O:⇔:O interactions lengthen the solvent HO bond while the solute HO bond contracts because its bond order loss. Differential phonon spectroscopy quantifies the abundance, structure order, and stiffness of the bonds transiting from the mode of pristine water to the perturbed states. The HBCP and the perturbative spectroscopy have enabled the dynamic potentials for the relaxing O:H-O bond. Findings not only amplified the power of the Raman spectroscopy but also substantiated the understanding of anomalies of water subjecting to perturbation.
Collapse
|
25
|
Gao T, Korb JP, Lukšič M, Mériguet G, Malikova N, Rollet AL. Ion influence on surface water dynamics and proton exchange at protein surfaces - A unified model for transverse and longitudinal NMR relaxation dispersion. J Mol Liq 2022; 367:120451. [PMID: 37790165 PMCID: PMC10544814 DOI: 10.1016/j.molliq.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions. We present a unified model of surface water dynamics and proton exchange, accounting simultaneously for the observed longitudinal and transverse relaxation rates. The most notable effect of salt (0.1 M) concerns the slow surface water dynamics, related to rare water molecules embedded in energy wells on the protein surface. This response is protein-specific. On the other hand, the proton exchange time between labile protein-protons and water-protons at the protein surface seems to be very similar for the two proteins and is insensitive to the addition of salts at the concentration studied.
Collapse
Affiliation(s)
- Tadeja Gao
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jean-Pierre Korb
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Guillaume Mériguet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Natalie Malikova
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Anne-Laure Rollet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| |
Collapse
|
26
|
Nasrollahzadeh F, Roman L, Skov K, Jakobsen LM, Trinh BM, Tsochatzis ED, Mekonnen T, Corredig M, Dutcher JR, Martinez MM. A comparative investigation of seed storage protein fractions: The synergistic impact of molecular properties and composition on anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
28
|
Similar Responses of Relatively Salt-Tolerant Plants to Na and K during Chloride Salinity: Comparison of Growth, Water Content and Ion Accumulation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101577. [PMID: 36295012 PMCID: PMC9605674 DOI: 10.3390/life12101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to compare changes in growth, ion accumulation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity in a form of chloride salts were found for all model plants, including growth stimulation at low concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic effects of monovalent cations or/and the specific effect of Cl−.
Collapse
|
29
|
Chemical interaction between PVDF and Li cations during LiCl crystallization in VMCr. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This study presents the equilibrium surface tension (ST), critical micelle concentration (CMC) and the dilational viscoelasticity of sodium dodecylbenzene sulfonate (SDBS)-adsorbed layers in the presence of NaCl, KCl, LiCl, CaCl2 and MgCl2 at 0.001–0.1 M salt concentration. The ST and surface dilational viscoelasticity were determined using bubble-shape analysis technique. To capture the complete profile of dilational viscoelastic properties of SDBS-adsorbed layers, experiments were conducted within a wide range of SDBS concentrations at a fixed oscillating frequency of 0.01 Hz. Salts were found to lower the ST and induce micellar formation at all concentrations. However, the addition of salts increased dilational viscoelastic modulus only at a certain range of SDBS concentration (below 0.01–0.02 mM SDBS). Above this concentration range, salts decreased dilational viscoelasticity due to the domination of the induced molecular exchange dampening the ST gradient. The dilational viscoelasticity of the salts of interest were in the order CaCl2 > MgCl2 > KCl > NaCl > LiCl. The charge density of ions was found as the corresponding factor for the higher impact of divalent ions compared to monovalent ions, while the impact of monovalent ions was assigned to the degree of matching in water affinities, and thereby the tendency for ion-pairing between SDBS head groups and monovalent ions.
Collapse
|
31
|
Yang X, Ji M, Zhang C, Yang X, Xu Z. Physical insight into the entropy-driven ion association. J Comput Chem 2022; 43:1621-1632. [PMID: 35801676 DOI: 10.1002/jcc.26963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The ion association is widely believed to be dominated by the favorable entropy change arising from the release of water molecules from ion hydration shells. However, no direct thermodynamic evidence exists to validate the reliability and suitability of this view. Herein, we employ complicated free energy calculations to rigorously split the free energy including its entropic and enthalpic components into the water-induced contributions and ion-ion interaction terms for several ion pairs from monatomic to polyatomic ions, spanning the size range from small kosmotropes to large chaotropes (Na+ , Cs+ , Ca2+ , F- , I- , CO3 2- , and HPO4 2- ). Our results successfully reveal that though ion associations are indeed determined by a delicate balance between the favorable entropy variation and the repulsive enthalpy change, the entropy gain dominated by the solvent occurs only for the monatomic ion pairing. The water-induced entropic contribution significantly goes against the ion pairing between polyatomic anion and cation, which is, alternatively, dominated by the favorable entropy from the ion-ion interaction term, due to the configurational arrangement of polyatomic anions involved in ion association. The structural and dynamic analysis demonstrates that the entropy penalty from the water phase is primarily ascribed to the enhanced stability of water molecules around the cation imposed by the incoming anion. Our study successfully provides a fundamental understanding of water-mediated ion associations and highlights disparate lengthscale dependencies of the dehydration thermodynamics on the specific types of ions.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Mingyu Ji
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Cong Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China.,Zhangjiagang Institute of Nanjing Tech University, Zhangjiagang, China
| |
Collapse
|
32
|
Donon J, Bardaud JX, Brenner V, Ishiuchi SI, Fujii M, Gloaguen E. Stepwise dissociation of ion pairs by water molecules: cation-dependent separation mechanisms between carboxylate and alkali-earth metal ions. Phys Chem Chem Phys 2022; 24:12121-12125. [PMID: 35545953 DOI: 10.1039/d2cp01158a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microhydrated H2-tagged ion pairs (Ca2+, AcO-)(H2O)n=0-8 and (Ba2+, AcO-)(H2O)n=0-5 are investigated by IR photodissociation laser spectroscopy and DFT-D frequency calculations. The detailed picture of the first steps of ion dissociation reveals two mechanisms, where water molecules promote dissociation either directly or indirectly depending on the nature of the cation.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA, CNRS, Université Paris Saclay CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France.
| | - Jean-Xavier Bardaud
- LIDYL, CEA, CNRS, Université Paris Saclay CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France.
| | - Valérie Brenner
- LIDYL, CEA, CNRS, Université Paris Saclay CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France.
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| | - Eric Gloaguen
- LIDYL, CEA, CNRS, Université Paris Saclay CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
33
|
Bush SN, Ken JS, Martin CR. The Ionic Composition and Chemistry of Nanopore-Confined Solutions. ACS NANO 2022; 16:8338-8346. [PMID: 35486898 DOI: 10.1021/acsnano.2c02597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is increasing interest in understanding the properties of solutions confined within nanotubes and synthetic or biological nanopores. How the ionic content of a nanopore-confined solution differs from that of a contacting bulk salt solution is of particular importance, for example, to water desalinization, industrial electrolysis, and all living systems. This paper explores ionic content, ionic interactions, and ion-transport properties of solutions confined within the 10 nm diameter pores of a synthetic polymer membrane. The membrane has a fixed negative pore-wall and surface charge due to ionizable carbonate groups. As a result, under some conditions, the nanopore-confined solution contains only cations and no anions or salt present in a contacting solution, ideal cation permselectivity. This anion- and salt-rejecting ability varies greatly with the cation of the salt, a result that is in contradiction to the prevailing model for permselectivity in nanopores. The extant model fails because it does not account for specific chemical interactions between the cation and the carbonate groups. The nature of these ion-selective interactions is discussed here.
Collapse
Affiliation(s)
- Stevie N Bush
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jay S Ken
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Charles R Martin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
34
|
Ab initio study of hydrated cesium iodide dimer (CsI) 2-/0(H 2O )0-6 and the cation size effect on (MI) 2-/0(H 2O) 0-6 (M = Li, Na, K, Cs). J Mol Model 2022; 28:95. [PMID: 35316847 DOI: 10.1007/s00894-022-05091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
The structures of microsolvated (CsI)2-/0(H2O)0-6 clusters were determined using ab initio calculations. Our studies show that one Cs atom at the apex was firstly separated from the pyramid-shaped (CsI)2- unit when the water number reaches 3, whereas CsI distances did not increase significantly from n = 0 to 6 for neutrals. Additionally, the atomic charge and reduced density gradient analyses were carried out; the results reveal that the extra electrons are almost entirely localized on terminal Cs atom and the Cs+-water interactions dominate in (CsI)2-(H2O)0-6. The water-water interactions show up at n = 5. The comparison of (CsI)2-/0(H2O)n with (MI)2-/0(H2O)n (M = Li, Na, K) shows that neutral (CsI)2 is the most difficult to be separated, which matches the law of matching water affinity. As for anions, the most difficult separation occurs in the case of small size (LiI)2- due to the effect of extra electrons, and (MI)2- with larger size cation is more likely to interact with water to form a pyramid structure.
Collapse
|
35
|
Li L, Sun W, Tong Z, Bo M, Ken Ostrikov K, Huang Y, Sun CQ. Discriminative ionic polarizability of alkali halide solutions: Hydration cells, bond distortion, surface stress, and viscosity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Judd KD, Gonzalez NM, Yang T, Cremer PS. Contact Ion Pair Formation Is Not Necessarily Stronger than Solvent Shared Ion Pairing. J Phys Chem Lett 2022; 13:923-930. [PMID: 35050629 DOI: 10.1021/acs.jpclett.1c03576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vibrational sum frequency spectroscopy (VSFS) and pressure-area Langmuir trough measurements were used to investigate the binding of alkali metal cations to eicosyl sulfate (ESO4) surfactants in monolayers at the air/water interface. The number density of sulfate groups could be tuned by mixing the anionic surfactant with eicosanol. The equilibrium dissociation constant for K+ to the fatty sulfate interface showed 10 times greater affinity than for Li+ and approximately 3 times greater than for Na+. All three cations formed solvent shared ion pairs when the mole fraction of ESO4 was 0.33 or lower. Above this threshold charge density, Li+ formed contact ion pairs with the sulfate headgroups, presumably via bridging structures. By contrast, K+ only bound to the sulfate moieties in solvent shared ion pairing configurations. The behavior for Na+ was intermediate. These results demonstrate that there is not necessarily a correlation between contact ion pair formation and stronger binding affinity.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicole M Gonzalez
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
37
|
Bakhshandeh A, Frydel D, Levin Y. Reactive Monte Carlo simulations for charge regulation of colloidal particles. J Chem Phys 2022; 156:014108. [PMID: 34998334 DOI: 10.1063/5.0077956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We use a reactive Monte Carlo simulation method and the primitive model of electrolyte to study acid-base equilibrium that controls charge regulation in colloidal systems. The simulations are performed in a semi-grand canonical ensemble in which colloidal suspension is in contact with a reservoir of salt and strong acid. The interior of colloidal particles is modeled as a low dielectric medium, different from the surrounding water. The effective colloidal charge is calculated for different numbers of surface acidic groups, pH, salt concentrations, and types of electrolyte. In the case of potassium chloride, the titration curves are compared with the experimental measurements obtained using potentiometric titration. A good agreement is found between simulations and experiments. In the case of lithium chloride, the specific ionic adsorption is taken into account through the partial dehydration of lithium ion.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Derek Frydel
- Department of Chemistry, Universidad Técnica Federico Santa María, Campus San Joaquin, 7820275 Santiago, Chile
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
38
|
Eisenhart AE, Beck TL. Specific Ion Solvation and Pairing Effects in Glycerol Carbonate. J Phys Chem B 2021; 125:13635-13643. [PMID: 34894679 DOI: 10.1021/acs.jpcb.1c06575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the driving forces behind the solvation of inorganic salts by nonaqueous solvents is an important step in the development of green solvents. Here we focus on one promising solvent: glycerol carbonate (GC). Using ab initio molecular dynamics simulations, we build upon our previous work by detailing glycerol carbonate's interactions with a series of anions, a lithium ion, and the LiF ion pair. Through these investigations, we highlight the changes in solvation behavior as the anion size increases, the competition of binding shown by lithium for the oxygens of GC, and the behavior of the LiF ion pair in a GC solution. These results indicate the importance of the cation's identity in ion-pairing structure and dynamics and lend insight into the key factors behind the specific ion effects seen in GC.
Collapse
Affiliation(s)
- Andrew E Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas L Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
39
|
Donon J, Habka S, Very T, Charnay-Pouget F, Mons M, Aitken DJ, Brenner V, Gloaguen E. Ion Pair Supramolecular Structure Identified by ATR-FTIR Spectroscopy and Simulations in Explicit Solvent*. Chemphyschem 2021; 22:2442-2455. [PMID: 34637180 DOI: 10.1002/cphc.202100565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Indexed: 11/12/2022]
Abstract
The present work uses ATR-FTIR spectroscopy assisted by simulations in explicit solvent and frequency calculations to investigate the supramolecular structure of carboxylate alkali-metal ion pairs in aqueous solutions. ATR-FTIR spectra in the 0.25-4.0 M concentration range displayed cation-specific behaviors, which enabled the measurement of the appearance concentration thresholds of contact ion pairs between 1.9 and 2.6 M depending on the cation. Conformational explorations performed using a non-local optimization method associated to a polarizable force-field (AMOEBA), followed by high quantum chemistry level (RI-B97-D3/dhf-TZVPP) optimizations, mode-dependent scaled harmonic frequency calculations and electron density analyses, were used to identify the main supramolecular structures contributing to the experimental spectra. A thorough analysis enables us to reveal the mechanisms responsible for the spectroscopic sensitivity of the carboxylate group and the respective role played by the cation and the water molecules, highlighting the necessity of combining advanced experimental and theoretical techniques to provide a fair and accurate description of ion pairing.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay, Bât 522, 91191, Gif-sur-Yvette, France
| | - Sana Habka
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay, Bât 522, 91191, Gif-sur-Yvette, France
| | - Thibaut Very
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay, Bât 522, 91191, Gif-sur-Yvette, France.,IDRIS-CNRS, Campus Universitaire d'Orsay, BP 167, 91403, Orsay cedex, France
| | - Florence Charnay-Pouget
- ICMMO, CNRS, Université Paris Sud, Université Paris Saclay, UMR 8182, Bât. 420, 15 rue Georges Clémenceau, 91405, Orsay cedex, France.,Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Michel Mons
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay, Bât 522, 91191, Gif-sur-Yvette, France
| | - David J Aitken
- ICMMO, CNRS, Université Paris Sud, Université Paris Saclay, UMR 8182, Bât. 420, 15 rue Georges Clémenceau, 91405, Orsay cedex, France
| | - Valérie Brenner
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay, Bât 522, 91191, Gif-sur-Yvette, France
| | - Eric Gloaguen
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay, Bât 522, 91191, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Shen Y, Wei X, Wang Y, Shen Y, Li L, Huang Y, Ostrikov KK, Sun CQ. Energy absorbancy and freezing-temperature tunability of NaCl solutions during ice formation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Shi Y, Doyle CC, Beck TL. Condensed Phase Water Molecular Multipole Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data. J Phys Chem Lett 2021; 12:10310-10317. [PMID: 34662132 DOI: 10.1021/acs.jpclett.1c02328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ionic solvation phenomena in liquids involve intense interactions in the inner solvation shell. For interactions beyond the first shell, the ion-solvent interaction energies result from the sum of many smaller-magnitude contributions that can still include polarization effects. Deep neural network (DNN) methods have recently found wide application in developing efficient molecular models that maintain near-quantum accuracy. Here we extend the DeePMD-kit code to produce accurate molecular multipole moments in the bulk and near interfaces. The new method is validated by comparing the DNN moments with those generated by ab initio simulations. The moments are used to compute the electrostatic potential at the center of a molecular-sized hydrophobic cavity in water. The results show that the fields produced by the DNN models are in quantitative agreement with the AIMD-derived values. These efficient methods will open the door to more accurate solvation models for large solutes such as proteins.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Carrie C Doyle
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Thomas L Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
42
|
Duignan TT, Zhao XS. Prediction of the Osmotic/Activity Coefficients of Alkali Hydroxide Electrolytes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy T. Duignan
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - X. S. Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
43
|
Sanchez-Fernandez A, Jackson AJ, Prévost SF, Doutch JJ, Edler KJ. Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents. J Am Chem Soc 2021; 143:14158-14168. [PMID: 34459188 PMCID: PMC8431340 DOI: 10.1021/jacs.1c04781] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/31/2022]
Abstract
While the traditional consensus dictates that high ion concentrations lead to negligible long-range electrostatic interactions, we demonstrate that electrostatic correlations prevail in deep eutectic solvents where intrinsic ion concentrations often surpass 2.5 M. Here we present an investigation of intermicellar interactions in 1:2 choline chloride:glycerol and 1:2 choline bromide:glycerol using small-angle neutron scattering. Our results show that long-range electrostatic repulsions between charged colloidal particles occur in these solvents. Interestingly, micelle morphology and electrostatic interactions are modulated by specific counterion condensation at the micelle interface despite the exceedingly high concentration of the native halide from the solvent. This modulation follows the trends described by the Hofmeister series for specific ion effects. The results are rationalized in terms of predominant ion-ion correlations, which explain the reduction in the effective ionic strength of the continuum and the observed specific ion effects.
Collapse
Affiliation(s)
| | - Andrew J. Jackson
- European
Spallation Source, Box
176, 221 00 Lund, Sweden
- Department
of Physical Chemistry, Lund University, Lund, SE-221 00, Sweden
| | | | - James J. Doutch
- ISIS
Neutron and Muon Source, Science and Technology
Facilities Council, Rutherford Appleton
Laboratory, Didcot, OX11 0QX, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
| |
Collapse
|
44
|
Janc T, Korb JP, Lukšič M, Vlachy V, Bryant RG, Mériguet G, Malikova N, Rollet AL. Multiscale Water Dynamics on Protein Surfaces: Protein-Specific Response to Surface Ions. J Phys Chem B 2021; 125:8673-8681. [PMID: 34342225 DOI: 10.1021/acs.jpcb.1c02513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.
Collapse
Affiliation(s)
- Tadeja Janc
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jean-Pierre Korb
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert G Bryant
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Natalie Malikova
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | | |
Collapse
|
45
|
Manoj KM, Bazhin N, Tamagawa H. The murburn precepts for cellular ionic homeostasis and electrophysiology. J Cell Physiol 2021; 237:804-814. [PMID: 34378795 DOI: 10.1002/jcp.30547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Starting from the basic molecular structure and redox properties of its components, we build a macroscopic cellular electrophysiological model. We first present a murburn purview that could explain ion distribution in bulk-milieu/membrane-interface and support the origin of trans-membrane potential (TMP) in cells. In particular, the discussion focuses on how cells achieve disparity in the distribution of monovalent and divalent cations within (K+ > Na+ > Mg2+ > Ca2+ ) and outside (Na+ > K+ > Ca2+ > Mg2+ ). We explore how TMP could vary for resting/graded/action potentials generation and project a model for impulse conduction in neurons. Outcomes based on murburn bioenergetic equilibriums leading to solubilization of ion-pairs, membrane's permittivity, protein channels' fluxes, and proteins' innate ability to bind/adsorb ions selectively are projected as the integral rationale. We also provide experimental modalities to ratify the projections.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Palakkad, Kerala, India
| | - Nikolai Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Yanagido, Gifu, Japan
| |
Collapse
|
46
|
Begić M, Pečenković S, Gajdošik MŠ, Josić D, Müller E. Salt-tolerant cation exchanger-containing sulfate groups as a viable alternative for mixed-mode type and heparin-based affinity resins. Biotechnol J 2021; 16:e2100100. [PMID: 34347362 DOI: 10.1002/biot.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Ion-exchange chromatography is still one of the most popular protein separation techniques. Before chromatographic separation, the high salt concentration in various samples necessitates additional steps. Therefore, low salt tolerance of ion-exchange resins is a drawback that needs to be addressed. Herein, the differences in salt tolerance and hydrophobicity of strong cation-exchange TOYOPEARL resins of sulfonium and sulfate-types were investigated. Despite only a minor structural difference, differences in selectivity and salt tolerance between the sulfate and sulfonic groups were detected. In silico calculations were also carried out for model substances representing the sulfonium and sulfate groups, wherein significant differences in hydrophobicity was observed. These experiments confirmed the hypothesis that the salt tolerance, higher affinity, and selectivity for certain vitamin K dependent clotting factors are interrelated and dependent on the presence of the sulfate group. Separation of clotting factor IX from the prothrombin complex concentrate further to confirmed the affinity for these proteins. The results show that the use of only a resin with the sulfate ligand and not with the sulfonic acid ligand allows for a facile and rapid separation of clotting factor IX and other vitamin K dependent clotting factors.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, University Juraj Dobrila, Pula, Croatia
| | | | | | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
47
|
Yoon SG, Park BJ, Jin H, Lee WH, Han J, Cho YH, Yook H, Han JW, Kim YS. Probing an Interfacial Ionic Pairing-Induced Molecular Dipole Effect in Ionovoltaic System. SMALL METHODS 2021; 5:e2100323. [PMID: 34927990 DOI: 10.1002/smtd.202100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Indexed: 06/14/2023]
Abstract
A surficial molecular dipole effect depending on ion-molecular interactions has been crucial issues regarding to an interfacial potential, which can modulate solid electronic and electrochemical systems. Their properties near the interfacial region can be dictated by specific interactions between surface and adsorbates, but understandings of the corresponding details remain at interesting issues. Here, intuitive observations of an ionic pair formation-induced interfacial potential shifts are presented with an ionovoltaic system, and corresponding output signal variations are analyzed in terms of the surficial dipole changes on self-assembled monolayer. With aiding of photoelectron spectroscopies and density function theory simulation, the ionic pair formation-induced potential shifts are revealed to strongly rely on a paired molecular structure and a binding affinity of the paired ionic moieties. Chemical contributions to the binding event are interrogated in terms of polarizability in each ionic group and consistent with chaotropic/kosmotropic character of the ionic groups. Based on these findings, the ionovoltaic output changes are theoretically correlated with an adsorption isotherm reflecting the molecular dipole effect, thereby demonstrating as an efficient interfacial molecular probing method under electrolyte interfacing conditions.
Collapse
Affiliation(s)
- Sun Geun Yoon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byoung Joon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Huding Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical & Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea
| |
Collapse
|
48
|
Abstract
The molecular properties of proteins are influenced by various ions present in the same solution. While site-specific strong interactions between multivalent metal ions and proteins are well characterized, the behavior of other ions that are only weakly interacting with proteins remains elusive. In the current study, using NMR spectroscopy, we have investigated anion-protein interactions for three proteins that are similar in size but differ in overall charge. Using a unique NMR-based approach, we quantified anions accumulated around the proteins. The determined numbers of anions that are electrostatically attracted to the charged proteins were notably smaller than the overall charge valences and were consistent with predictions from the Poisson-Boltzmann theory. This NMR-based approach also allowed us to measure ionic diffusion and characterize the anions interacting with the positively charged proteins. Our data show that these anions rapidly diffuse while bound to the proteins. Using the same experimental approach, we observed the release of the anions from the protein surface upon the formation of the Antp homeodomain-DNA complex. Using paramagnetic relaxation enhancement (PRE), we visualized the spatial distribution of anions around the free proteins and the Antp homeodomain-DNA complex. The obtained PRE data revealed the localization of anions in the vicinity of the highly positively charged regions of the free Antp homeodomain and provided further evidence of the release of anions from the protein surface upon the protein-DNA association. This study sheds light on the dynamic behavior of anions that electrostatically interact with proteins.
Collapse
|
49
|
Desai AM, Pandey SP, Singh PK. Effect of counter-anions on the aggregation of Thioflavin-T. Phys Chem Chem Phys 2021; 23:9948-9961. [PMID: 33861224 DOI: 10.1039/d1cp00193k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aggregation of small molecules in aqueous solution is known to be influenced by the ionic strength of the medium; however, the role played by the identity of salt in the phenomenon of small molecule aggregation is rarely investigated. In the present contribution, we have investigated the effect of counter-anions on the aggregation of a popular cationic amyloid sensing probe, Thioflavin-T (ThT), by taking six different anions, viz. chloride, bromide, acetate, iodide, tetrafluoroborate, and perchlorate. Our results clearly indicate that it is not the ionic strength of the medium which solely controls aggregation of small molecules but distinct ions behave distinctly with regard to the organization. In fact, distinct ion effects play a major role in the salt induced organization of fluorophores. Using detailed steady-state emission, time-resolved emission, and ground-state absorption measurements, the optical properties of salt induced aggregates of ThT have been characterized. We have rationalized our observations on the basis of the theory of matching water affinity, which suggests that the matching free hydration energy is a critical aspect for the formation of contact ion pairs, which eventually results in aggregation. In brief, a larger sized anion, perchlorate, has a lower free energy of hydration and forms a suitable contact ion pair, with a larger organic cation, ThT, having weaker hydration. This contact ion-pair formation subsequently leads to the formation of an aggregate assembly which is found to be emissive in nature. Therefore, it is possible to induce aggregation of ThT by selecting the right counterion with the appropriate size, which may help us to evaluate the false positive signals when high ionic strength and specific counterions are present in the sensing matrix.
Collapse
Affiliation(s)
- Akshat M Desai
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | | | |
Collapse
|
50
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|