1
|
Terui R, Berger SE, Sambel LA, Song D, Chistol G. Single-molecule imaging reveals the mechanism of bidirectional replication initiation in metazoa. Cell 2024; 187:3992-4009.e25. [PMID: 38866019 PMCID: PMC11283366 DOI: 10.1016/j.cell.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Scott E Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Larissa A Sambel
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Song
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA; BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Padayachy L, Ntallis SG, Halazonetis TD. RECQL4 is not critical for firing of human DNA replication origins. Sci Rep 2024; 14:7708. [PMID: 38565932 PMCID: PMC10987555 DOI: 10.1038/s41598-024-58404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.
Collapse
Affiliation(s)
- Laura Padayachy
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Sotirios G Ntallis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
3
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
4
|
Balajee AS. Human RecQL4 as a Novel Molecular Target for Cancer Therapy. Cytogenet Genome Res 2021; 161:305-327. [PMID: 34474412 DOI: 10.1159/000516568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
5
|
Lu L, Jin W, Wang LL. RECQ DNA Helicases and Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:37-54. [PMID: 32767233 DOI: 10.1007/978-3-030-43085-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Weidong Jin
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lisa L Wang
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Castillo-Tandazo W, Smeets MF, Murphy V, Liu R, Hodson C, Heierhorst J, Deans AJ, Walkley CR. ATP-dependent helicase activity is dispensable for the physiological functions of Recql4. PLoS Genet 2019; 15:e1008266. [PMID: 31276497 PMCID: PMC6636780 DOI: 10.1371/journal.pgen.1008266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by skin rash (poikiloderma), skeletal dysplasia, small stature, juvenile cataracts, sparse or absent hair, and predisposition to specific malignancies such as osteosarcoma and hematological neoplasms. RTS is caused by germ-line mutations in RECQL4, a RecQ helicase family member. In vitro studies have identified functions for the ATP-dependent helicase of RECQL4. However, its specific role in vivo remains unclear. To determine the physiological requirement and the biological functions of Recql4 helicase activity, we generated mice with an ATP-binding-deficient knock-in mutation (Recql4K525A). Recql4K525A/K525A mice were strikingly normal in terms of embryonic development, body weight, hematopoiesis, B and T cell development, and physiological DNA damage repair. However, mice bearing two distinct truncating mutations Recql4G522Efs and Recql4R347*, that abolished not only the helicase but also the C-terminal domain, developed a profound bone marrow failure and decrease in survival similar to a Recql4 null allele. These results demonstrate that the ATP-dependent helicase activity of Recql4 is not essential for its physiological functions and that other domains might contribute to this phenotype. Future studies need to be performed to elucidate the complex interactions of RECQL4 domains and its contribution to the development of RTS. DNA helicases unwind double-stranded nucleic acids using energy from ATP to access genetic information during cell replication. In humans, several families of helicases have been described and one of particular importance is the RecQ family, where mutations in three of five members cause human disease. RECQL4 is a member of this family and its mutation results in Rothmund-Thomson syndrome (RTS). Prior studies have shown that defects in the helicase region of RECQL4 may contribute to the disease, but no studies have specifically assessed the biological effects of its absence in a whole animal model. In this study, we generated a mouse model with a specific point mutation resulting in a helicase-inactive Recql4 protein. We found that an absence of ATP-dependent helicase activity does not perturb the physiological functions of Recql4 with the homozygous mutants being normal. In contrast, when we assessed point mutations that generate protein truncations these were pathogenic. Our results suggest that the helicase function of Recql4 is not essential for its physiological functions and that other domains of this protein might account for its functions in diseases such as RTS.
Collapse
Affiliation(s)
- Wilson Castillo-Tandazo
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Monique F. Smeets
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Vincent Murphy
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Rui Liu
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Charlotte Hodson
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andrew J. Deans
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Carl R. Walkley
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
- * E-mail:
| |
Collapse
|
7
|
Rogers CM, Wang JCY, Noguchi H, Imasaki T, Takagi Y, Bochman ML. Yeast Hrq1 shares structural and functional homology with the disease-linked human RecQ4 helicase. Nucleic Acids Res 2017; 45:5217-5230. [PMID: 28334827 PMCID: PMC5605238 DOI: 10.1093/nar/gkx151] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
The five human RecQ helicases participate in multiple processes required to maintain genome integrity. Of these, the disease-linked RecQ4 is the least studied because it poses many technical challenges. We previously demonstrated that the yeast Hrq1 helicase displays similar functions to RecQ4 in vivo, and here, we report the biochemical and structural characterization of these enzymes. In vitro, Hrq1 and RecQ4 are DNA-stimulated ATPases and robust helicases. Further, these activities were sensitive to DNA sequence and structure, with the helicases preferentially unwinding D-loops. Consistent with their roles at telomeres, telomeric repeat sequence DNA also stimulated binding and unwinding by these enzymes. Finally, electron microscopy revealed that Hrq1 and RecQ4 share similar structural features. These results solidify Hrq1 as a true RecQ4 homolog and position it as the premier model to determine how RecQ4 mutations lead to genomic instability and disease.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | | | - Hiroki Noguchi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Kaiser S, Sauer F, Kisker C. The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism. Nat Commun 2017; 8:15907. [PMID: 28653661 PMCID: PMC5490261 DOI: 10.1038/ncomms15907] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
RecQ4 is a member of the RecQ helicase family, an evolutionarily conserved class of enzymes, dedicated to preserving genomic integrity by operating in telomere maintenance, DNA repair and replication. While reduced RecQ4 activity is associated with cancer predisposition and premature aging, RecQ4 upregulation is related to carcinogenesis and metastasis. Within the RecQ family, RecQ4 assumes an exceptional position, lacking several characteristic RecQ domains. Here we present the crystal structure of human RecQ4, encompassing the conserved ATPase core and a novel C-terminal domain that lacks resemblance to the RQC domain observed in other RecQ helicases. The new domain features a zinc-binding site and two distinct types of winged-helix domains, which are not involved in canonical DNA binding or helicase activity. Based on our structural and functional analysis, we propose that RecQ4 exerts a helicase mechanism, which may be more closely related to bacterial RecQ helicases than to its human family members. RecQ helicases are important for maintaining genomic integrity. Here, the authors present functional data and the crystal structure of human RecQ4, which exerts a helicase mechanism that may be more closely related to bacterial RecQ helicases than to its human family members.
Collapse
Affiliation(s)
- Sebastian Kaiser
- Rudolf-Virchow-Center for Experimental Biomedicine, Institute of Structural Biology, Josef-Schneider-Str. 2/D15, Wuerzburg 97080, Germany
| | - Florian Sauer
- Rudolf-Virchow-Center for Experimental Biomedicine, Institute of Structural Biology, Josef-Schneider-Str. 2/D15, Wuerzburg 97080, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, Institute of Structural Biology, Josef-Schneider-Str. 2/D15, Wuerzburg 97080, Germany
| |
Collapse
|
9
|
DNA-conjugated gold nanoparticles based colorimetric assay to assess helicase activity: a novel route to screen potential helicase inhibitors. Sci Rep 2017; 7:44358. [PMID: 28287182 PMCID: PMC5347027 DOI: 10.1038/srep44358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/08/2017] [Indexed: 12/28/2022] Open
Abstract
Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.
Collapse
|
10
|
Mojumdar A, De March M, Marino F, Onesti S. The Human RecQ4 Helicase Contains a Functional RecQ C-terminal Region (RQC) That Is Essential for Activity. J Biol Chem 2016; 292:4176-4184. [PMID: 27998982 DOI: 10.1074/jbc.m116.767954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/18/2016] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are essential in the maintenance of genome stability. Five paralogues (RecQ1, Bloom, Werner, RecQ4, and RecQ5) are found in human cells, with distinct but overlapping roles. Mutations in human RecQ4 give rise to three distinct genetic disorders (Rothmund-Thomson, RAPADILINO, and Baller-Gerold syndromes), characterized by genetic instability, growth deficiency, and predisposition to cancer. Previous studies suggested that RecQ4 was unique because it did not seem to contain a RecQ C-terminal region (RQC) found in the other RecQ paralogues; such a region consists of a zinc domain and a winged helix domain and plays an important role in enzyme activity. However, our recent bioinformatic analysis identified in RecQ4 a putative RQC. To experimentally confirm this hypothesis, we report the purification and characterization of the catalytic core of human RecQ4. Inductively coupled plasma-atomic emission spectrometry detected the unusual presence of two zinc clusters within the zinc domain, consistent with the bioinformatic prediction. Analysis of site-directed mutants, targeting key RQC residues (putative zinc ligands and the aromatic residue predicted to be at the tip of the winged helix β-hairpin), showed a decrease in DNA binding, unwinding, and annealing, as expected for a functional RQC domain. Low resolution structural information obtained by small angle X-ray scattering data suggests that RecQ4 interacts with DNA in a manner similar to RecQ1, whereas the winged helix domain may assume alternative conformations, as seen in the bacterial enzymes. These combined results experimentally confirm the presence of a functional RQC domain in human RecQ4.
Collapse
Affiliation(s)
- Aditya Mojumdar
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and.,the Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Matteo De March
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| | - Francesca Marino
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| | - Silvia Onesti
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| |
Collapse
|
11
|
Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 2016; 6:40464-79. [PMID: 26588054 PMCID: PMC4747346 DOI: 10.18632/oncotarget.6342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022] Open
Abstract
DNA replication is a highly coordinated process that is initiated at multiple replication origins in eukaryotes. These origins are bound by the origin recognition complex (ORC), which subsequently recruits the Mcm2-7 replicative helicase in a Cdt1/Cdc6-dependent manner. In budding yeast, two essential replication factors, Sld2 and Mcm10, are then important for the activation of replication origins. In humans, the putative Sld2 homolog, RECQ4, interacts with MCM10. Here, we have identified two mutants of human RECQ4 that are deficient in binding to MCM10. We show that these RECQ4 variants are able to complement the lethality of an avian cell RECQ4 deletion mutant, indicating that the essential function of RECQ4 in vertebrates is unlikely to require binding to MCM10. Nevertheless, we show that the RECQ4-MCM10 interaction is important for efficient replication origin firing.
Collapse
|
12
|
Structural and biochemical characterization of an RNA/DNA binding motif in the N-terminal domain of RecQ4 helicases. Sci Rep 2016; 6:21501. [PMID: 26888063 PMCID: PMC4757822 DOI: 10.1038/srep21501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/26/2016] [Indexed: 11/30/2022] Open
Abstract
The RecQ4 helicase belongs to the ubiquitous RecQ family but its exact role in the cell is not completely understood. In addition to the helicase domain, RecQ4 has a unique N-terminal part that is essential for viability and is constituted by a region homologous to the yeast Sld2 replication initiation factor, followed by a cysteine-rich region, predicted to fold as a Zn knuckle. We carried out a structural and biochemical analysis of both the human and Xenopus laevis RecQ4 cysteine-rich regions, and showed by NMR spectroscopy that the Xenopus fragment indeed assumes the canonical Zn knuckle fold, whereas the human sequence remains unstructured, consistent with the mutation of one of the Zn ligands. Both the human and Xenopus Zn knuckles bind to a variety of nucleic acid substrates, with a mild preference for RNA. We also investigated the effect of a segment located upstream the Zn knuckle that is highly conserved and rich in positively charged and aromatic residues, partially overlapping with the C-terminus of the Sld2-like domain. In both the human and Xenopus proteins, the presence of this region strongly enhances binding to nucleic acids. These results reveal novel possible roles of RecQ4 in DNA replication and genome stability.
Collapse
|
13
|
Ding L, Liu Y. Borrowing nuclear DNA helicases to protect mitochondrial DNA. Int J Mol Sci 2015; 16:10870-87. [PMID: 25984607 PMCID: PMC4463680 DOI: 10.3390/ijms160510870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer's disease, premature aging and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases.
Collapse
Affiliation(s)
- Lin Ding
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| | - Yilun Liu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
14
|
Keller H, Kiosze K, Sachsenweger J, Haumann S, Ohlenschläger O, Nuutinen T, Syväoja JE, Görlach M, Grosse F, Pospiech H. The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res 2014; 42:12614-27. [PMID: 25336622 PMCID: PMC4227796 DOI: 10.1093/nar/gku993] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/20/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
Human RecQL4 belongs to the ubiquitous RecQ helicase family. Its N-terminal region represents the only homologue of the essential DNA replication initiation factor Sld2 of Saccharomyces cerevisiae, and also participates in the vertebrate initiation of DNA replication. Here, we utilized a random screen to identify N-terminal fragments of human RecQL4 that could be stably expressed in and purified from Escherichia coli. Biophysical characterization of these fragments revealed that the Sld2 homologous RecQL4 N-terminal domain carries large intrinsically disordered regions. The N-terminal fragments were sufficient for the strong annealing activity of RecQL4. Moreover, this activity appeared to be the basis for an ATP-independent strand exchange activity. Both activities relied on multiple DNA-binding sites with affinities to single-stranded, double-stranded and Y-structured DNA. Finally, we found a remarkable affinity of the N-terminus for guanine quadruplex (G4) DNA, exceeding the affinities for other DNA structures by at least 60-fold. Together, these findings suggest that the DNA interactions mediated by the N-terminal region of human RecQL4 represent a central function at the replication fork. The presented data may also provide a mechanistic explanation for the role of elements with a G4-forming propensity identified in the vicinity of vertebrate origins of DNA replication.
Collapse
Affiliation(s)
- Heidi Keller
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Kristin Kiosze
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Juliane Sachsenweger
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Sebastian Haumann
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Tarmo Nuutinen
- Department of Biology, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
| | - Juhani E Syväoja
- Institute of Biomedicine, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Matthias Görlach
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Frank Grosse
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany Center for Molecular Biomedicine, Friedrich-Schiller University, Jena, Germany
| | - Helmut Pospiech
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany Faculty of Biochemistry and Molecular Medicine, PO Box 5000, FI-90014 University of Oulu, Finland
| |
Collapse
|
15
|
Smeets MF, DeLuca E, Wall M, Quach JM, Chalk AM, Deans AJ, Heierhorst J, Purton LE, Izon DJ, Walkley CR. The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis. J Clin Invest 2014; 124:3551-65. [PMID: 24960165 DOI: 10.1172/jci75334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022] Open
Abstract
Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases.
Collapse
|
16
|
Shamanna RA, Singh DK, Lu H, Mirey G, Keijzers G, Salles B, Croteau DL, Bohr VA. RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis 2014; 35:2415-24. [PMID: 24942867 DOI: 10.1093/carcin/bgu137] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induced DNA double-strand breaks (DSB). Here, we have characterized the functional roles of RECQL4 in the non-homologous end joining (NHEJ) pathway of DSB repair. In an in vitro NHEJ assay that depends on the activity of DNA-dependent protein kinase (DNA-PK), extracts from RECQL4 knockdown cells display reduced end-joining activity on DNA substrates with cohesive and non-cohesive ends. Depletion of RECQL4 also reduced the end joining activity on a GFP reporter plasmid in vivo. Knockdown of RECQL4 increased the sensitivity of cells to γ-irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-PK complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase in NHEJ.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Huiming Lu
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gladys Mirey
- INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and
| | - Guido Keijzers
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernard Salles
- INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. Cell Death Dis 2014; 5:e1226. [PMID: 24832598 PMCID: PMC4047874 DOI: 10.1038/cddis.2014.168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
Abstract
Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging-related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund–Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated β-galactosidase (SA-β-gal), higher expression of p16INK4a or/and p21WAF1 and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4HD). Tail fibroblasts from Recql4HD showed increased SA-β-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4HD mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients.
Collapse
|
18
|
Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. ACTA ACUST UNITED AC 2014; 204:507-22. [PMID: 24535824 PMCID: PMC3926958 DOI: 10.1083/jcb.201310083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Timely phosphorylation of SLD-2 by CDK is essential for proper replication initiation and cell proliferation in the germline of C. elegans. Cyclin-dependent kinase (CDK) plays a vital role in proliferation control across eukaryotes. Despite this, how CDK mediates cell cycle and developmental transitions in metazoa is poorly understood. In this paper, we identify orthologues of Sld2, a CDK target that is important for DNA replication in yeast, and characterize SLD-2 in the nematode worm Caenorhabditis elegans. We demonstrate that SLD-2 is required for replication initiation and the nuclear retention of a critical component of the replicative helicase CDC-45 in embryos. SLD-2 is a CDK target in vivo, and phosphorylation regulates the interaction with another replication factor, MUS-101. By mutation of the CDK sites in sld-2, we show that CDK phosphorylation of SLD-2 is essential in C. elegans. Finally, using a phosphomimicking sld-2 mutant, we demonstrate that timely CDK phosphorylation of SLD-2 is an important control mechanism to allow normal proliferation in the germline. These results determine an essential function of CDK in metazoa and identify a developmental role for regulated SLD-2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, 2 Department of Genetics, and 3 Department of Zoology, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | | | | | | | | | |
Collapse
|
19
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
20
|
Bruck I, Kaplan DL. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem 2013; 289:1948-59. [PMID: 24307213 DOI: 10.1074/jbc.m113.532085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | | |
Collapse
|
21
|
Structure of the RecQ C-terminal domain of human Bloom syndrome protein. Sci Rep 2013; 3:3294. [PMID: 24257077 PMCID: PMC6505963 DOI: 10.1038/srep03294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/06/2013] [Indexed: 01/23/2023] Open
Abstract
Bloom syndrome is a rare genetic disorder characterized by genomic instability and cancer predisposition. The disease is caused by mutations of the Bloom syndrome protein (BLM). Here we report the crystal structure of a RecQ C-terminal (RQC) domain from human BLM. The structure reveals three novel features of BLM RQC which distinguish it from the previous structures of the Werner syndrome protein (WRN) and RECQ1. First, BLM RQC lacks an aromatic residue at the tip of the β-wing, a key element of the RecQ-family helicases used for DNA-strand separation. Second, a BLM-specific insertion between the N-terminal helices exhibits a looping-out structure that extends at right angles to the β-wing. Deletion mutagenesis of this insertion interfered with binding to Holliday junction. Third, the C-terminal region of BLM RQC adopts an extended structure running along the domain surface, which may facilitate the spatial positioning of an HRDC domain in the full-length protein.
Collapse
|