1
|
Umbach S, Levin R, Neumann S, Steinmetzer T, Dötsch V, Bernhard F. Transfer mechanism of cell-free synthesized membrane proteins into mammalian cells. Front Bioeng Biotechnol 2022; 10:906295. [PMID: 35935506 PMCID: PMC9355040 DOI: 10.3389/fbioe.2022.906295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Nanodiscs are emerging to serve as transfer vectors for the insertion of recombinant membrane proteins into membranes of living cells. In combination with cell-free expression technologies, this novel process opens new perspectives to analyze the effects of even problematic targets such as toxic, hard-to-express, or artificially modified membrane proteins in complex cellular environments of different cell lines. Furthermore, transferred cells must not be genetically engineered and primary cell lines or cancer cells could be implemented as well. We have systematically analyzed the basic parameters of the nanotransfer approach and compared the transfer efficiencies from nanodiscs with that from Salipro particles. The transfer of five membrane proteins was analyzed: the prokaryotic proton pump proteorhodopsin, the human class A family G-protein coupled receptors for endothelin type B, prostacyclin, free fatty acids type 2, and the orphan GPRC5B receptor as a class C family member. The membrane proteins were cell-free synthesized with a detergent-free strategy by their cotranslational insertion into preformed nanoparticles containing defined lipid environments. The purified membrane protein/nanoparticles were then incubated with mammalian cells. We demonstrate that nanodiscs disassemble and only lipids and membrane proteins, not the scaffold protein, are transferred into cell membranes. The process is detectable within minutes, independent of the nanoparticle lipid composition, and the transfer efficiency directly correlates with the membrane protein concentration in the transfer mixture and with the incubation time. Transferred membrane proteins insert in both orientations, N-terminus in and N-terminus out, in the cell membrane, and the ratio can be modulated by engineering. The viability of cells is not notably affected by the transfer procedure, and transferred membrane proteins stay detectable in the cell membrane for up to 3 days. Transferred G-protein coupled receptors retained their functionality in the cell environment as shown by ligand binding, induction of internalization, and specific protein interactions. In comparison to transfection, the cellular membrane protein concentration is better controllable and more uniformly distributed within the analyzed cell population. A further notable difference to transfection is the accumulation of transferred membrane proteins in clusters, presumably determined by microdomain structures in the cell membranes.
Collapse
Affiliation(s)
- Simon Umbach
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Neumann
- Institute for Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Torsten Steinmetzer
- Institute for Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Frank Bernhard,
| |
Collapse
|
2
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
3
|
Talló K, Pons R, González C, López O. Monitoring the formation of a colloidal lipid gel at the nanoscale: vesicle aggregation driven by a temperature-induced mechanism. J Mater Chem B 2021; 9:7472-7481. [PMID: 34551044 DOI: 10.1039/d1tb01020d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Colloidal gels made of lipid vesicles at highly diluted conditions have been recently described. The structure and composition of this type of material could be especially relevant for studies that combine model lipid membranes with proteins, peptides, or enzymes to replicate biological conditions. Details about the nanoscale events that occur during the formation of such gels would motivate their future application. Thus, in this work we investigate the gelation mechanism, which consists of a lipid dispersion of vesicles going through a process that involves freezing and heating. The appropriate combination of techniques (transmission electron microscopy, differential scanning calorimetry and synchrotron small angle X-ray scattering) allowed in-depth analysis of the different events that give rise to the formation of the gel. Results showed how freezing damaged the lipid dispersion, causing a polydisperse suspension of membrane fragments and vesicles upon melting. Heating above the lipids' main phase transition temperature promoted the formation of elongated tubular structures. After cooling, these lipid tubes broke down into vesicles that formed branched aggregates across the aqueous phase, obtaining a material with gel characteristics. These mechanistic insights may also allow finding new ways to interact with lipid vesicles to form structured materials. Future works might complement the presented results with molecular dynamics or nuclear magnetic resonance experiments.
Collapse
Affiliation(s)
- Kirian Talló
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Ramon Pons
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - César González
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Olga López
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Rangubpit W, Paritanon P, Pandey RB, Sompornpisut P. Thermally induced structural organization of nanodiscs by coarse-grained molecular dynamics simulations. Biophys Chem 2020; 267:106464. [PMID: 32927312 DOI: 10.1016/j.bpc.2020.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Membrane scaffold proteins (MSP) nanodiscs have been extensively used in structural study of membrane proteins. In cryo-EM, an incorporation of target proteins into nanodiscs is conducted under a rapid change from cryogenic to ambient temperatures. We present a coarse-grained molecular dynamics (CGMD) study for investigating an effect of temperature on the structural organization of DPPC-nanodisc and POPC-nanodisc. A non-monotonic response of physical quantities (i.e. the lipid order parameter, nanodisc flatness, structural change, solvation property, radius of gyration) with increase in temperature (T = 200-350 K) is found to be associated with the gel-ripple-liquid crystalline phase change within nanodiscs. The reorganization of lipids upon temperature variation induced conformational changes of MSP to minimize hydrophobic exposure of the lipid membrane to an aqueous environment. Structural response to temperature is different to a certain extent between the saturated DPPC and unsaturated POPC.
Collapse
Affiliation(s)
- Warin Rangubpit
- Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, 10330, Thailand
| | - Pasawan Paritanon
- Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, 10330, Thailand
| | - Ras B Pandey
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pornthep Sompornpisut
- Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, 10330, Thailand.
| |
Collapse
|
5
|
Cleary SP, Prell JS. Distinct classes of multi-subunit heterogeneity: analysis using Fourier Transform methods and native mass spectrometry. Analyst 2020; 145:4688-4697. [PMID: 32459233 PMCID: PMC8483610 DOI: 10.1039/d0an00726a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Native electrospray mass spectrometry is a powerful method for determining the native stoichiometry of many polydisperse multi-subunit biological complexes, including multi-subunit protein complexes and lipid-bound transmembrane proteins. However, when polydispersity results from incorporation of multiple copies of two or more different subunits, it can be difficult to analyze subunit stoichiometry using conventional mass spectrometry analysis methods, especially when m/z distributions for different charge states overlap in the mass spectrum. It was recently demonstrated by Marty and co-workers (K. K. Hoi, et al., Anal. Chem., 2016, 88, 6199-6204) that Fourier Transform (FT)-based methods can determine the bulk average lipid composition of protein-lipid Nanodiscs assembled with two different lipids, but a detailed statistical description of the composition of more general polydisperse two-subunit populations is still difficult to achieve. This results from the vast number of ways in which the two types of subunit can be distributed within the analyte ensemble. Here, we present a theoretical description of three common classes of heterogeneity for mixed-subunit analytes and demonstrate how to differentiate and analyze them using mass spectrometry and FT methods. First, we first describe FT-based analysis of mass spectra corresponding to simple superpositions, convolutions, and multinomial distributions for two or more different subunit types using model data sets. We then apply these principles with real samples, including mixtures of single-lipid Nanodiscs in the same solution (superposition), mixed-lipid Nanodiscs and copolymers (convolutions), and isotope distribution for ubiquitin (multinomial distribution). This classification scheme and the FT method used to study these analyte classes should be broadly useful in mass spectrometry as well as other techniques where overlapping, periodic signals arising from analyte mixtures are common.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA.
| | | |
Collapse
|
6
|
Gao YG, My Le LT, Zhai X, Boldyrev IA, Mishra SK, Tischer A, Murayama T, Nishida A, Molotkovsky JG, Alam A, Brown RE. Measuring Lipid Transfer Protein Activity Using Bicelle-Dilution Model Membranes. Anal Chem 2020; 92:3417-3425. [PMID: 31970977 DOI: 10.1021/acs.analchem.9b05523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.
Collapse
Affiliation(s)
- Yong-Guang Gao
- The Hormel Institute , University of Minnesota , 801 16th Avenue NE , Austin , Minnesota 55912 , United States
| | - Le Thi My Le
- The Hormel Institute , University of Minnesota , 801 16th Avenue NE , Austin , Minnesota 55912 , United States
| | - Xiuhong Zhai
- The Hormel Institute , University of Minnesota , 801 16th Avenue NE , Austin , Minnesota 55912 , United States
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , 117997 Moscow , Russian Federation
| | - Shrawan K Mishra
- The Hormel Institute , University of Minnesota , 801 16th Avenue NE , Austin , Minnesota 55912 , United States
| | - Alexander Tischer
- Mayo Clinic Division of Hematology , 150 Third Street SW , Stabile Building, Rochester , Minnesota 55905 , United States
| | - Toshihiko Murayama
- Graduate School of Pharmaceutical Sciences , Chiba University , Inohana 1-8-1 , Chuo-ku, Chiba 260-8675 , Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences , Chiba University , Inohana 1-8-1 , Chuo-ku, Chiba 260-8675 , Japan
| | - Julian G Molotkovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , 117997 Moscow , Russian Federation
| | - Amer Alam
- The Hormel Institute , University of Minnesota , 801 16th Avenue NE , Austin , Minnesota 55912 , United States
| | - Rhoderick E Brown
- The Hormel Institute , University of Minnesota , 801 16th Avenue NE , Austin , Minnesota 55912 , United States
| |
Collapse
|
7
|
Dang AT, He W, Ivey DB, Coleman MA, Kuhl TL. Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12071-12078. [PMID: 31442053 PMCID: PMC7024587 DOI: 10.1021/acs.langmuir.9b01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A nanolipoprotein particle (NLP) is a lipid bilayer disc stabilized by two amphipathic "scaffold" apolipoproteins. It has been most notably utilized as a tool for solubilizing a variety of membrane proteins while preserving structural and functional properties. Transfer of functional proteins from NLPs into model membrane systems such as supported lipid bilayers (SLBs) would enable new opportunities, for example, two-dimensional protein crystallization and studies on protein-protein interactions. This work used fluorescence microscopy and atomic force microscopy to investigate the interaction between NLPs and SLBs. When incubated with SLBs, NLPs were found to spontaneously deliver lipid and protein cargo. The impact of membrane composition on lipid exchange was explored, revealing a positive correlation between the magnitude of lipid transfer and concentration of defects in the target SLB. Incorporation of lipids capable of binding specifically to polyhistidine tags encoded into the apolipoproteins also boosted transfer of NLP cargo. Optimal conditions for lipid and protein delivery from NLPs to SLBs are proposed based on interaction mechanisms.
Collapse
Affiliation(s)
- Amanda T. Dang
- Department of Materials Science and Engineering, University of California, Davis CA 95616
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Daniela B. Ivey
- Department of Chemical Engineering, University of California, Davis CA 95616
| | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California, Davis CA 95616
| |
Collapse
|
8
|
Shelby ML, He W, Dang AT, Kuhl TL, Coleman MA. Cell-Free Co-Translational Approaches for Producing Mammalian Receptors: Expanding the Cell-Free Expression Toolbox Using Nanolipoproteins. Front Pharmacol 2019; 10:744. [PMID: 31333463 PMCID: PMC6616253 DOI: 10.3389/fphar.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
Membranes proteins make up more than 60% of current drug targets and account for approximately 30% or more of the cellular proteome. Access to this important class of proteins has been difficult due to their inherent insolubility and tendency to aggregate in aqueous solutions. Understanding membrane protein structure and function demands novel means of membrane protein production that preserve both their native conformational state as well as function. Over the last decade, cell-free expression systems have emerged as an important complement to cell-based expression of membrane proteins due to their simple and customizable experimental parameters. One approach to overcome the solubility and stability limitations of purified membrane proteins is to support them in stable, native-like states within nanolipoprotein particles (NLPs), aka nanodiscs. This has become common practice to facilitate biochemical and biophysical characterization of proteins of interest. NLP technology can be easily coupled with cell-free systems to achieve functional membrane protein production for this purpose. Our approach involves utilizing cell-free expression systems in the presence of NLPs or using co-translation techniques to perform one-pot expression and self-assembly of membrane protein/NLP complexes. We describe how cell-free reactions can be modified to render control over nanoparticle size and monodispersity in support of membrane protein production. These modifications have been exploited to facilitate co-expression of full-length functional membrane proteins such as G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In particular, we summarize the state of the art in NLP-assisted cell-free coexpression of these important classes of membrane proteins as well as evaluate the advances in and prospects for this technology that will drive drug discovery against these targets. We conclude with a prospective on the use of NLPs to produce as well as deliver functional mammalian membrane-bound proteins for a range of applications.
Collapse
Affiliation(s)
- Megan L Shelby
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amanda T Dang
- University of California at Davis, Davis, CA, United States
| | - Tonya L Kuhl
- University of California at Davis, Davis, CA, United States
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States.,University of California at Davis, Davis, CA, United States
| |
Collapse
|
9
|
He W, Felderman M, Evans AC, Geng J, Homan D, Bourguet F, Fischer NO, Li Y, Lam KS, Noy A, Xing L, Cheng RH, Rasley A, Blanchette CD, Kamrud K, Wang N, Gouvis H, Peterson TC, Hubby B, Coleman MA. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 2017; 292:15121-15132. [PMID: 28739800 DOI: 10.1074/jbc.m117.784561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.
Collapse
Affiliation(s)
- Wei He
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | - Angela C Evans
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Jia Geng
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - David Homan
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Feliza Bourguet
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Nicholas O Fischer
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Yuanpei Li
- the Department of Biochemistry and Molecular Medicine and
| | - Kit S Lam
- the Department of Biochemistry and Molecular Medicine and
| | - Aleksandr Noy
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - Li Xing
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - R Holland Cheng
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - Amy Rasley
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Craig D Blanchette
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Kurt Kamrud
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Nathaniel Wang
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Heather Gouvis
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | | | - Bolyn Hubby
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Matthew A Coleman
- From the Lawrence Livermore National Laboratory, Livermore, California 94550, .,Radiation Oncology, School of Medicine, University of California Davis, Sacramento, California 95817, and
| |
Collapse
|
10
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
From Nanodiscs to Isotropic Bicelles: A Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral Membrane Proteins. Structure 2016; 24:1830-1841. [PMID: 27618661 DOI: 10.1016/j.str.2016.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
Nanodiscs and isotropic bicelles are promising membrane mimetics in the field of solution nuclear magnetic resonance (NMR) spectroscopy of integral membrane proteins (IMPs). Despite varied challenges to solution NMR studies of IMPs, we attribute the paucity of solution NMR structures in these environments to the inability of diverse IMPs to withstand detergent treatment during standard nanodisc and bicelle preparations. Here, we present a strategy that creates small isotropic bicelles from IMPs co-translationally embedded in large nanodiscs using cell-free expression. Our results demonstrate appreciable gains in NMR spectral quality while preserving lipid-IMP contacts. We validate the approach on the detergent-sensitive LspA, which finally allowed us to perform high-quality triple-resonance NMR experiments for structural studies. Our strategy of producing bicelles from nanodiscs comprehensively avoids detergent during expression and preparation and is suitable for solution NMR spectroscopy of lipid-IMP complexes.
Collapse
|