1
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
3
|
Sun M, Gu Y, Fang H, Shao F, Lin C, Zhang H, Li H, He H, Li R, Wang J, Liu H, Xu J. Clinical outcome and molecular landscape of patients with ARID1A-loss gastric cancer. Cancer Sci 2024; 115:905-915. [PMID: 38148578 PMCID: PMC10920992 DOI: 10.1111/cas.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023] Open
Abstract
Chromatin remodelers are commonly altered in human cancer. The mutation of AT-rich interactive domain 1A (ARID1A) in gastric cancer (GC), a component of the SWI/SNF chromatin remodeling complex, was proven associated with treatment response in our previous study. However, ARID1A loss of function was caused not only by mutations but also copy number deletions. The clinicopathologic, genomic, and immunophenotypic correlates of ARID1A loss is largely uncharacterized in GC. Here, 819 patients with clinicopathological information and sequencing data or formalin-fixed paraffin-embedded tissues from four cohorts, Zhongshan Hospital (ZSHS) cohort (n = 375), The Cancer Genome Atlas (TCGA) cohort (n = 371), Samsung Medical Center (SMC) cohort (n = 53), and ZSHS immunotherapy cohort (n = 20), were enrolled. ARID1A loss was defined by genome sequencing or deficient ARID1A expression by immunohistochemistry. We found that ARID1A mutation and copy number deletion were enriched in GC with microsatellite instability (MSI) and chromosomal-instability (CIN), respectively. In the TCGA and ZSHS cohorts, only CIN GC with ARID1A loss could benefit from fluorouracil-based adjuvant chemotherapy. In the SMC and ZSHS immunotherapy cohorts, ARID1A loss exhibited a tendency of superior responsiveness and indicated favorable overall survival after anti-PD-1 immunotherapy. ARID1A-loss tumors demonstrated elevated mutation burden, neoantigen load, and interferon gamma pathway activation. Moreover, in CIN GC, ARID1A loss was correlated with higher homologous recombination deficiency. ARID1A loss defines a distinct subtype of GC characterized by high levels of genome instability, neoantigen formation, and immune activation. These tumors show sensitivity to both chemotherapy and anti-PD-1 immunotherapy. This study provides valuable insights for precision treatment strategies in GC.
Collapse
Affiliation(s)
- Mengyao Sun
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of General Surgery, Shanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hanji Fang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Fei Shao
- Department of Oncology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chao Lin
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Heng Zhang
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - He Li
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hongyong He
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ruochen Li
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jieti Wang
- Department of EndoscopyFudan University Shanghai Cancer CenterShanghaiChina
| | - Hao Liu
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Zhang J, Chen L, Wei W, Mao F. Long non-coding RNA signature for predicting gastric cancer survival based on genomic instability. Aging (Albany NY) 2023; 15:15114-15133. [PMID: 38127056 PMCID: PMC10781445 DOI: 10.18632/aging.205336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastric cancer is a prevalent type of tumor with a poor prognosis. Given the high occurrence of genomic instability in gastric cancer, it is essential to investigate the prognostic significance of genes associated with genomic instability in this disease. METHODS We identified genomic instability-related lncRNAs (GInLncRNAs) by analyzing somatic mutation and transcriptome profiles. We evaluated co-expression and enrichment using various analyses, including univariate COX analysis and LASSO regression. Based on these findings, we established an lncRNA signature associated with genomic instability, which we subsequently assessed for prognostic value, immune cell and checkpoint analysis, drug sensitivity, and external validation. Finally, PCR assay was used to verify the expression of key lncRNAs. RESULTS Our study resulted in the establishment of a seven-lncRNA prognostic signature, including PTENP1-AS, LINC00163, RP11-169F17.1, C8ORF87, RP11-389G6.3, LINCO1210, and RP11-115H13.1. This signature exhibited independent prognostic value and was associated with specific immune cells and checkpoints in gastric cancer. Additionally, the model was correlated with somatic mutation and several chemotherapeutic drugs. We further confirmed the prognostic value of LINC00163, which was included in our model, in an independent dataset. Our model demonstrated superior performance compared to other models. PCR showed that LINC00163 was significantly up-regulated in 4 adjacent normal tissues compared with the GC tissues. CONCLUSIONS Our study resulted in the establishment of a seven-lncRNA signature associated with genomic instability, which demonstrated robust prognostic value in predicting the prognosis of gastric cancer. The signature also identified potential chemotherapeutic drugs, making it a valuable tool for clinical decision-making and medication use.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, People’s Republic of China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, P.R. China
| | - Wei Wei
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Liu Z, Liang W, Zhu Q, Cheng X, Qian R, Gao Y. PSRC1 Regulated by DNA Methylation Is a Novel Target for LGG Immunotherapy. J Mol Neurosci 2023; 73:516-528. [PMID: 37326762 DOI: 10.1007/s12031-023-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Proline and serine-rich coiled-coil 1 (PSRC1) has been reported to function as an oncogene in several cancers by regulating mitosis, while there are few reports on the role of PSRC1 in lower-grade glioma (LGG). Thus, this study collected 22 samples and 1126 samples from our institution and several databases, respectively, to explore the function of PSRC1 in LGG. First, the analysis of clinical characteristics showed that PSRC1 was always highly expressed in more malignant clinical characteristics of LGG, such as higher WHO grade, recurrence type, and IDH wild type. Second, the prognosis analysis revealed that the high expression of PSRC1 was an independent risk factor contributing to the shorter overall survival of LGG patients. Third, the analysis of DNA methylation showed that the expression of PSRC1 was associated with its 8 DNA methylation sites, overall negatively regulated by its DNA methylation level in LGG. Fourth, the analysis of immune correlation revealed that the expression of PSRC1 was positively correlated with the infiltration of 6 immune cells and the expression of 4 well-known immune checkpoints in LGG, respectively. Finally, co-expression analysis and KEGG analysis showed the 10 genes most related to PSRC1 and the signaling pathways involved by PSRC1 in LGG, respectively, such as MAPK signaling pathway and focal adhesion. In conclusion, this study identified the pathogenic role of PSRC1 in the pathological progression of LGG, expanding the molecular understanding of PSRC1, and provided a biomarker and potential immunotherapeutic target for the treatment of LGG.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Wenjia Liang
- People's Hospital of Henan University, Henan Provincial People's Hospital, , Microbiome Laboratory, Zhengzhou, 450003, Henan Province, China
| | - Qingyun Zhu
- Henan University School of Clinical Medicine, Henan Provincial People's Hospital, Microbiome Laboratory, Zhengzhou, 450003, Henan Province, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, , Zhengzhou, 450003, Henan Province, China.
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
6
|
Zhang Y, Wang Y, He X, Yao R, Fan L, Zhao L, Lu B, Pang Z. Genome instability-related LINC02577, LINC01133 and AC107464.2 are lncRNA prognostic markers correlated with immune microenvironment in pancreatic adenocarcinoma. BMC Cancer 2023; 23:430. [PMID: 37173624 PMCID: PMC10176692 DOI: 10.1186/s12885-023-10831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a leading cause of malignancy-related deaths worldwide, and the efficacy of immunotherapy on PAAD is limited. Studies report that long non-coding RNAs (lncRNAs) play an important role in modulating genomic instability and immunotherapy. However, the identification of genome instability-related lncRNAs and their clinical significance has not been investigated in PAAD. METHODS The current study developed a computational framework for mutation hypothesis based on lncRNA expression profile and somatic mutation spectrum in pancreatic adenocarcinoma genome. We explored the potential of GInLncRNAs(genome instability-related lncRNAs) through co-expression analysis and function enrichment analysis. We further analyzed GInLncRNAs by Cox regression and used the results to construct a prognostic lncRNA signature. Finally, we analyzed the relationship between GILncSig (genomic instability derived 3-lncRNA signature) and immunotherapy. RESULTS A GILncSig was developed using bioinformatics analyses. It could divide patients into high-risk and low-risk groups, and there was a significant difference in OS between the two groups. In addition, GILncSig was associated with genome mutation rate in pancreatic adenocarcinoma, indicating its potential value as a marker for genomic instability. The GILncSig accurately grouped wild type patients of KRAS into two risk groups. The prognosis of the low-risk group was significantly improved. GILncSig was significantly correlated with the level of immune cell infiltration and immune checkpoint. CONCLUSIONS In summary, the current study provides a basis for further studies on the role of lncRNA in genomic instability and immunotherapy. The study provides a novel method for identification of cancer biomarkers related to genomic instability and immunotherapy.
Collapse
Affiliation(s)
- Yinjiang Zhang
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Yao Wang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xu He
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Rongfei Yao
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Lu Fan
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Linyi Zhao
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China.
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, No. 27, Zhongguancunnan Street, Haidian District, Beijing, 100081, People's Republic of China.
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, People's Republic of China.
| |
Collapse
|
7
|
Mehta IS, Riyahi K, Pereira RT, Meaburn KJ, Figgitt M, Kill IR, Eskiw CH, Bridger JM. Interphase Chromosomes in Replicative Senescence: Chromosome Positioning as a Senescence Biomarker and the Lack of Nuclear Motor-Driven Chromosome Repositioning in Senescent Cells. Front Cell Dev Biol 2021; 9:640200. [PMID: 34113611 PMCID: PMC8185894 DOI: 10.3389/fcell.2021.640200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1β (NM1β). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1β (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1β within senescent HDFs.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Tata Institute of Fundamental Research, Mumbai, India
| | - Kumars Riyahi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Rita Torres Pereira
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Karen J Meaburn
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Martin Figgitt
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Department of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ian R Kill
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joanna M Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
Wang H, Liu X, Li G. Explore a novel function of human condensins in cellular senescence. Cell Biosci 2020; 10:147. [PMID: 33375949 PMCID: PMC7772929 DOI: 10.1186/s13578-020-00512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022] Open
Abstract
There are two kinds of condensins in human cells, known as condensin I and condensin II. The canonical roles of condensins are participated in chromosome dynamics, including chromosome condensation and segregation during cell division. Recently, a novel function of human condensins has been found with increasing evidences that they play important roles in cellular senescence. This paper reviewed the research progress of human condensins involved in different types of cellular senescence, mainly oncogene-induced senescence (OIS) and replicative senescence (RS). The future perspectives of human condensins involved in cellular senescence are also discussed.
Collapse
Affiliation(s)
- Hongzhen Wang
- School of Life Sciences, Jilin Normal University, 136000, Siping, People's Republic of China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, People's Republic of China.
| | - Xin Liu
- School of Life Sciences, Jilin Normal University, 136000, Siping, People's Republic of China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, People's Republic of China
| |
Collapse
|
9
|
Liu H, Zhou Q, Wei W, Qi B, Zeng F, Bao N, Li Q, Guo F, Xia S. The potential drug for treatment in pancreatic adenocarcinoma: a bioinformatical study based on distinct drug databases. Chin Med 2020; 15:26. [PMID: 32206083 PMCID: PMC7079489 DOI: 10.1186/s13020-020-00309-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background The prediction of drug-target interaction from chemical and biological data can advance our search for potential drug, contributing to a therapeutic strategy for pancreatic adenocarcinoma (PAAD). We aim to identify hub genes of PAAD and search for potential drugs from distinct databases. The docking simulation is adopted to validate our findings from computable perspective. Methods Differently expressed genes (DEGs) of PAAD were performed based on TCGA. With two Cytoscape plugins of CentiScaPe and MCODE, hub genes were analyzed and visualized by STRING analysis of Protein–protein Interaction (PPI). The hub genes were further selected with significant prognostic values. In addition, we examined the correlation between hub genes and immune infiltration in PAAD. Subsequently, we searched for the hub gene-targeted drugs in Connectivity map (Cmap) and cBioportal, which provided a large body of candidate drugs. The hub gene, which was covered in the above two databases, was estimated in Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Herbal Ingredients’ Targets (HIT) database, which collected natural herbs and related ingredients. After obtaining molecular structures, the potential ingredient from TCMSP was applied for a docking simulation. We finalized a network connectivity of ingredient and its targets. Results A total of 2616 DEGs of PAAD were identified, then we further determined and visualized 24 hub genes by a connectivity analysis of PPI. Based on prognostic value, we identified 5 hub genes including AURKA (p = 0.0059), CCNA2 (p = 0.0047), CXCL10 (p = 0.0044), ADAM10 (p = 0.00043), and BUB1 (p = 0.0033). We then estimated tumor immune correlation of these 5 hub genes, because the immune effector process was one major result of GO analysis. Subsequently, we continued to search for candidate drugs from Cmap and cBioportal database. BUB1, not covered in the above two databases, was estimated in TCMSP and HIT databases. Our results revealed that genistein was a potential drug of BUB1. Next, we generated two docking modes to validate drug-target interaction based on their 3D structures. We eventually constructed a network connectivity of BUB1 and its targets. Conclusions All 5 hub genes that predicted poor prognosis had their potential drugs, especially our findings showed that genistein was predicted to target BUB1 based on TCMSP and docking simulation. This study provided a reasonable approach to extensively retrieve and initially validate putative therapeutic agents for PAAD. In future, these drug-target results should be investigated with solid data from practical experiments.
Collapse
Affiliation(s)
- Han Liu
- 1College of Stomatology, Dalian Medical University, Dalian, China
| | - Qi Zhou
- 2Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wenjuan Wei
- 3Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China.,4National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Bing Qi
- 5Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fen Zeng
- 2Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Nabuqi Bao
- 2Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qian Li
- 2Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- 2Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shilin Xia
- 6Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,7Department of Palliative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
10
|
Vanzo R, Bartkova J, Merchut-Maya JM, Hall A, Bouchal J, Dyrskjøt L, Frankel LB, Gorgoulis V, Maya-Mendoza A, Jäättelä M, Bartek J. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ 2020; 27:1134-1153. [PMID: 31409894 PMCID: PMC7206042 DOI: 10.1038/s41418-019-0403-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that captures aberrant intracellular proteins and/or damaged organelles for delivery to lysosomes, with implications for cellular and organismal homeostasis, aging and diverse pathologies, including cancer. During cancer development, autophagy may play both tumour-supporting and tumour-suppressing roles. Any relationships of autophagy to the established oncogene-induced replication stress (RS) and the ensuing DNA damage response (DDR)-mediated anti-cancer barrier in early tumorigenesis remain to be elucidated. Here, assessing potential links between autophagy, RS and DDR, we found that autophagy is enhanced in both early and advanced stages of human urinary bladder and prostate tumorigenesis. Furthermore, a high-content, single-cell-level microscopy analysis of human cellular models exposed to diverse genotoxic insults showed that autophagy is enhanced in cells that experienced robust DNA damage, independently of the cell-cycle position. Oncogene- and drug-induced RS triggered first DDR and later autophagy. Unexpectedly, genetic inactivation of autophagy resulted in RS, despite cellular retention of functional mitochondria and normal ROS levels. Moreover, recovery from experimentally induced RS required autophagy to support DNA synthesis. Consistently, RS due to the absence of autophagy could be partly alleviated by exogenous supply of deoxynucleosides. Our results highlight the importance of autophagy for DNA synthesis, suggesting that autophagy may support cancer progression, at least in part, by facilitating tumour cell survival and fitness under replication stress, a feature shared by most malignancies. These findings have implications for better understanding of the role of autophagy in tumorigenesis, as well as for attempts to manipulate autophagy as an anti-tumour therapeutic strategy.
Collapse
Affiliation(s)
- Riccardo Vanzo
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | | | - Arnaldur Hall
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa B Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Marja Jäättelä
- Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
Song XD, Wang YN, Zhang AL, Liu B. Advances in research on the interaction between inflammation and cancer. J Int Med Res 2019; 48:300060519895347. [PMID: 31885347 PMCID: PMC7686609 DOI: 10.1177/0300060519895347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's response to cell damage. Cancer is a general
term that describes all malignant tumours. There are no confirmed data
on cancer-related inflammation, but some research suggests that up to
50% of cancers may be linked to inflammation, which has led to the
concept of ‘cancer-associated inflammation’. Although some cancer
patients do not appear to have a chronic inflammatory background,
there might be inflammatory cell infiltration in their cancer tissues.
The continuation of the inflammatory response plays an important role
in the initiation, promotion, malignant transformation, invasion and
metastasis of cancer. Anti-inflammatory therapy has been shown to have
some effects on the prevention and treatment of cancer, which supports
a pathogenic relationship between inflammation and cancer. This review
describes the interaction between inflammation and tumour development
and the main mechanism of regulation of the inflammatory response
during tumour development.
Collapse
Affiliation(s)
- Xin-Da Song
- Department of Urinary Surgery, Graduate School of Peking Union Medical College, Beijing Hospital, National Centre of Gerontology, Beijing, China
| | - Ya-Ni Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ai-Li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
12
|
Shen X, Li M, Mao Z, Yu W. Loss of circadian protein TIMELESS accelerates the progression of cellular senescence. Biochem Biophys Res Commun 2018; 503:2784-2791. [DOI: 10.1016/j.bbrc.2018.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022]
|
13
|
ARID1A suppresses malignant transformation of human pancreatic cells via mediating senescence-associated miR-503/CDKN2A regulatory axis. Biochem Biophys Res Commun 2017; 493:1018-1025. [DOI: 10.1016/j.bbrc.2017.09.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023]
|