1
|
Yatsunyk LA, Neidle S. On Water Arrangements in Right- and Left-Handed DNA Structures. Molecules 2024; 29:505. [PMID: 38276583 PMCID: PMC10820154 DOI: 10.3390/molecules29020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
DNA requires hydration to maintain its structural integrity. Crystallographic analyses have enabled patterns of water arrangements to be visualized. We survey these water motifs in this review, focusing on left- and right-handed duplex and quadruplex DNAs, together with the i-motif. Common patterns of linear spines of water organization in grooves have been identified and are widely prevalent in right-handed duplexes and quadruplexes. By contrast, a left-handed quadruplex has a distinctive wheel of hydration populating the almost completely circular single groove in this structure.
Collapse
Affiliation(s)
- Liliya A. Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA;
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
2
|
Żołek T, Dömötör O, Rezler M, Enyedy ÉA, Maciejewska D. Deposition of pentamidine analogues in the human body - spectroscopic and computational approaches. Eur J Pharm Sci 2021; 161:105779. [PMID: 33667666 DOI: 10.1016/j.ejps.2021.105779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
Bis-benzamidines are a diverse group of compounds with high potential in pharmacotherapy, and among them, pentamidine is a drug of great therapeutic significance in Pneumocystis jiroveci pneumonia (PJP) prophylaxis and therapy. Pharmacokinetic properties of these cationic species such as transport, acid/base equilibria, and interactions with potential target molecules are still of interest, especially for recently designed compounds. To broaden our knowledge drug-likeness, human serum albumin binding, and acidity constants (Ka) were experimentally and theoretically examined for five pentamidine analogues 1 - 5 with -NH-CO-chain-CO-NH-bridges of increasing length and O, N, and S atoms in the chain. The studied analogues display very marked activity against Pneumocystis carinii without cytotoxicity that inspired us to perform an in silico analysis of their mode of action based on the hypothesis that the small DNA groove of rich in adenine-thymine pairs is their molecular target. These studies allowed us to classify them as very promising lead molecules.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Mateusz Rezler
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Ha VLT, Erlitzki N, Farahat AA, Kumar A, Boykin DW, Poon GMK. Dissecting Dynamic and Hydration Contributions to Sequence-Dependent DNA Minor Groove Recognition. Biophys J 2020; 119:1402-1415. [PMID: 32898478 DOI: 10.1016/j.bpj.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022] Open
Abstract
Sequence selectivity is a critical attribute of DNA-binding ligands and underlines the need for detailed molecular descriptions of binding in representative sequence contexts. We investigated the binding and volumetric properties of DB1976, a model bis(benzimidazole)-selenophene diamidine compound with emerging therapeutic potential in acute myeloid leukemia, debilitating fibroses, and obesity-related liver dysfunction. To sample the scope of cognate DB1976 target sites, we evaluated three dodecameric duplexes spanning >103-fold in binding affinity. The attendant changes in partial molar volumes varied substantially, but not in step with binding affinity, suggesting distinct modes of interactions in these complexes. Specifically, whereas optimal binding was associated with loss of hydration water, low-affinity binding released more hydration water. Explicit-atom molecular dynamics simulations showed that minor groove binding perturbed the conformational dynamics and hydration at the termini and interior of the DNA in a sequence-dependent manner. The impact of these distinct local dynamics on hydration was experimentally validated by domain-specific interrogation of hydration with salt, which probed the charged axial surfaces of oligomeric DNA preferentially over the uncharged termini. Minor groove recognition by DB1976, therefore, generates dynamically distinct domains that can make favorable contributions to hydration release in both high- and low-affinity binding. Because ligand binding at internal sites of DNA oligomers modulates dynamics at the termini, the results suggest both short- and long-range dynamic effects along the DNA target that can influence their effectiveness as low-MW competitors of protein binding.
Collapse
Affiliation(s)
- Van L T Ha
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Noa Erlitzki
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, Georgia; Department of Pharmaceutical and Medicinal Chemistry, California Northstate University, Elk Grove, California
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, Georgia; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
4
|
DNA recognition by linear indole-biphenyl DNA minor groove ligands. Biophys Chem 2018; 245:6-16. [PMID: 30513446 DOI: 10.1016/j.bpc.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022]
Abstract
Linear heterocyclic cations are interesting DNA minor groove ligands due to their lack of isohelical curvature classically associated with groove-binding compounds. We determined the DNA binding properties of four related dications harboring a linear indole-biphenyl core: the diamidine DB1883, a ditetrahydropyrimidine derivative (DB1804), and their monocationic counterparts (DB1944 and DB2627). These compounds exhibit heterogeneity in binding in accordance with their structures. Whereas the monocations exhibit salt-sensitive 1:1 binding to the duplex 5'-CGCGAATTCGCG-3' (A2T2), the dications show a marked preference for a salt-insensitive 2:1 complex. The two binding modes are differentially modulated by salt and specific non-ionic co-solutes. For both dications, 2-methyl-2,4-pentanediol enforces 1:1 binding as observed crystallographically. Fluorescence quenching studies show self-association without DNA in a relative order that is correlated with preference for the 2:1 complex. The data support a structure-binding relationship in which favorable cation-π interactions drive dimer formation via antiparallel stacking of the linear indole-biphenyl cation motif.
Collapse
|
5
|
Chen YW, Satange R, Wu PC, Jhan CR, Chang CK, Chung KR, Waring MJ, Lin SW, Hsieh LC, Hou MH. Co II(Chromomycin)₂ Complex Induces a Conformational Change of CCG Repeats from i-Motif to Base-Extruded DNA Duplex. Int J Mol Sci 2018; 19:ijms19092796. [PMID: 30227633 PMCID: PMC6164834 DOI: 10.3390/ijms19092796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 01/07/2023] Open
Abstract
We have reported the propensity of a DNA sequence containing CCG repeats to form a stable i-motif tetraplex structure in the absence of ligands. Here we show that an i-motif DNA sequence may transition to a base-extruded duplex structure with a GGCC tetranucleotide tract when bound to the (CoII)-mediated dimer of chromomycin A3, CoII(Chro)₂. Biophysical experiments reveal that CCG trinucleotide repeats provide favorable binding sites for CoII(Chro)₂. In addition, water hydration and divalent metal ion (CoII) interactions also play a crucial role in the stabilization of CCG trinucleotide repeats (TNRs). Our data furnish useful structural information for the design of novel therapeutic strategies to treat neurological diseases caused by repeat expansions.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung 402, Taiwan.
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Pei-Ching Wu
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Cyong-Ru Jhan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Chung-Ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Kuang-Ren Chung
- Department of Plant Pathology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Li-Ching Hsieh
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung 402, Taiwan.
- Advanced Plant Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Ming-Hon Hou
- Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung 402, Taiwan.
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
6
|
Editorial: High Pressure Bioscience and Biotechnology. Biophys Chem 2017; 231:1-2. [PMID: 29173654 DOI: 10.1016/j.bpc.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|