1
|
Abstract
The formation of amyloid fibrils is a complex phenomenon that remains poorly understood at the atomic scale. Herein, we perform extended unbiased all-atom simulations in explicit solvent of a short amphipathic peptide to shed light on the three mechanisms accounting for fibril formation, namely, nucleation via primary and secondary mechanisms, and fibril growth. We find that primary nucleation takes place via the formation of an intermediate state made of two laminated β-sheets oriented perpendicular to each other. The amyloid fibril spine subsequently emerges from the rotation of these β-sheets to account for peptides that are parallel to each other and perpendicular to the main axis of the fibril. Growth of this spine, in turn, takes place via a dock-and-lock mechanism. We find that peptides dock onto the fibril tip either from bulk solution or after diffusing on the fibril surface. The latter docking pathway contributes significantly to populate the fibril tip with peptides. We also find that side chain interactions drive the motion of peptides in the lock phase during growth, enabling them to adopt the structure imposed by the fibril tip with atomic fidelity. Conversely, the docked peptide becomes trapped in a local free energy minimum when docked-conformations are sampled randomly. Our simulations also highlight the role played by nonpolar fibril surface patches in catalyzing and orienting the formation of small cross-β structures. More broadly, our simulations provide important new insights into the pathways and interactions accounting for primary and secondary nucleation as well as the growth of amyloid fibrils.
Collapse
Affiliation(s)
- Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
2
|
Huang H, Liu C, Ma X, Wu J, Wang F, Liu Y, Li X. Structural evolution, digestibility and inhibition on starch digestion of rice glutelin fibril aggregates as affected by incubation. Int J Biol Macromol 2022; 214:522-529. [PMID: 35753518 DOI: 10.1016/j.ijbiomac.2022.06.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Structural evolution, digestibility and inhibition on starch digestion of rice glutelin fibril aggregates (RGFAs) as affected by incubation were investigated. Thioflavin T fluorescence intensity of the RGFAs, incubated for 4-day, reached the maximum values, which ranged from 845.00 ± 23.52 to 873.67 ± 50.30. Transmission electron microscopy (TEM) observed that the samples heated for 2 h (2 h fibril) were self-assembled from small glutelin aggregates and a few protofibrils into mature fibrils, the samples heated for 4-10 h (4-10 h fibril) were elongated into long, branched fibrils, and the longer fibrils of 15 h fibril sample dissociated into short fibrils after 4-day of incubation. Compared to rice glutelin, the RGFAs showed thermal stability and resistance to proteolysis. The fluorescence retention rate of 6 h fibril, after incubation for 4-day, was 8.62 ± 0.61 % after in vitro stomach and pancreas digestion, which was the highest among all of the samples. The RGFAs incubated for 1-day displayed much better inhibition effects on starch digestion. This was the first study to clarify the relationship between incubation and physicochemical/functional properties of protein fibrils, which could help understand the preservation of food protein fibrils and their application.
Collapse
Affiliation(s)
- Hui Huang
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Caiyi Liu
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Xiayin Ma
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faxiang Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Liu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianghong Li
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China.
| |
Collapse
|
3
|
β-Sheet to Random Coil Transition in Self-Assembling Peptide Scaffolds Promotes Proteolytic Degradation. Biomolecules 2022; 12:biom12030411. [PMID: 35327603 PMCID: PMC8945919 DOI: 10.3390/biom12030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022] Open
Abstract
One of the most desirable properties that biomaterials designed for tissue engineering or drug delivery applications should fulfill is biodegradation and resorption without toxicity. Therefore, there is an increasing interest in the development of biomaterials able to be enzymatically degraded once implanted at the injury site or once delivered to the target organ. In this paper, we demonstrate the protease sensitivity of self-assembling amphiphilic peptides, in particular, RAD16-I (AcN-RADARADARADARADA-CONH2), which contains four potential cleavage sites for trypsin. We detected that when subjected to thermal denaturation, the peptide secondary structure suffers a transition from β-sheet to random coil. We also used Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) to detect the proteolytic breakdown products of samples subjected to incubation with trypsin as well as atomic force microscopy (AFM) to visualize the effect of the degradation on the nanofiber scaffold. Interestingly, thermally treated samples had a higher extent of degradation than non-denatured samples, suggesting that the transition from β-sheet to random coil leaves the cleavage sites accessible and susceptible to protease degradation. These results indicate that the self-assembling peptide can be reduced to short peptide sequences and, subsequently, degraded to single amino acids, constituting a group of naturally biodegradable materials optimal for their application in tissue engineering and regenerative medicine.
Collapse
|
4
|
On the Protein Fibrillation Pathway: Oligomer Intermediates Detection Using ATR-FTIR Spectroscopy. Molecules 2021; 26:molecules26040970. [PMID: 33673072 PMCID: PMC7918411 DOI: 10.3390/molecules26040970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
Oligomeric intermediates on the pathway of amyloid fibrillation are suspected as the main cytotoxins responsible for amyloid-related pathogenicity. As they appear to be a part of the lag phase of amyloid fibrillation when analyzed using standard methods such as Thioflavin T (ThT) fluorescence, a more sensitive method is needed for their detection. Here we apply Fourier transform infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode for fast and cheap analysis of destabilized hen-egg-white lysozyme solution and detection of oligomer intermediates of amyloid fibrillation. Standard methods of protein aggregation analysis— Thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), and 8-anilinonaphthalene-1-sulphonic acid (ANS) fluorescence were applied and compared to FTIR spectroscopy data. Results show the great potential of FTIR for both, qualitative and quantitative monitoring of oligomer formation based on the secondary structure changes. While oligomer intermediates do not induce significant changes in ThT fluorescence, their secondary structure changes were very prominent. Normalization of specific Amide I region peak intensities by using Amide II peak intensity as an internal standard provides an opportunity to use FTIR spectroscopy for both qualitative and quantitative analysis of biological samples and detection of potentially toxic oligomers, as well as for screening of efficiency of fibrillation procedures.
Collapse
|
5
|
Thermodynamics of amyloid fibril formation from non-equilibrium experiments of growth and dissociation. Biophys Chem 2021; 271:106549. [PMID: 33578107 DOI: 10.1016/j.bpc.2021.106549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils are ordered, non-covalent polymers of proteins that are linked to a range of diseases, as well as biological functions. Amyloid fibrils are often considered thermodynamically so stable that they appear to be irreversible, explaining why very few quantitative thermodynamic studies have been performed on amyloid fibrils, compared to the very large body of kinetic studies. Here we explore the thermodynamics of amyloid fibril formation by the protein PI3K-SH3, which forms amyloid fibrils under acidic conditions. We use quartz crystal microbalance (QCM) and develop novel temperature perturbation experiments based on differential scanning fluorimetry (DSF) to measure the temperature dependence of the fibril growth and dissociation rates, allowing us to quantitatively describe the thermodynamic stability of PI3K-SH3 amyloid fibrils between 10 and 75°C.
Collapse
|
6
|
Milošević J, Petrić J, Jovčić B, Janković B, Polović N. Exploring the potential of infrared spectroscopy in qualitative and quantitative monitoring of ovalbumin amyloid fibrillation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117882. [PMID: 31818644 DOI: 10.1016/j.saa.2019.117882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Amyloid fibrils are highly ordered self-assembled (poly)peptide aggregates with cross-β structural pattern. Ovalbumin was used as a model for exploring the potential of infrared spectroscopy in detecting structural transitions and quantitative monitoring of amyloid fibrillation. Low pH (pH 2) and high temperature (90 °C) over the course of 24 h were conditions applied for amyloid formation. Fibrillation of ovalbumin was monitored by ThT and ANS fluorescence, and SDS PAGE. A significant increase in ThT fluorescence with a plateau reached after 4 h of incubation, without the lag phase, was detected. Structural transitions leading to amyloid fibrillation were analysed using all three Amide regions in ATR-FTIR spectra. Significant changes were detected in Amide I and Amide III region (decrease of α-helix and increase of β-sheet peaks). To establish a fast, precise and simple method for quantitative monitoring of amyloid fibrillation, the Amide I/Amide II ratios of aggregation specific β-sheets (1625 and 1695 cm-1, respectively) with 1540 cm-1 as internal standard were used, resulting in good correlation (R2 = 0.93 and 0.95) with the data observed by monitoring ThT fluorescence. On the other hand, assessing aggregation specific β-sheet contents by self-deconvolution showed lower correlation with ThT fluorescence (R2 = 0.75 and 0.64). Here we examined structural transitions during ovalbumin fibrillation in a qualitative and quantitative manner by exploiting the full potential of Amide regions simultaneously. Secondary structure distribution was monitored using second derivative spectra in Amide I region. A novel, simple mathematical calculation for quantitative monitoring of fibrils formation was presented employing that the increase in low and high frequency aggregation specific β-sheet in Amide I region compared to the internal standard in Amide II region is suitable for fibril formation monitoring.
Collapse
Affiliation(s)
- Jelica Milošević
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Jovan Petrić
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Branko Jovčić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Janković
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Natalija Polović
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia.
| |
Collapse
|
7
|
Lee J, Lee JH, Paik SR, Yeom B, Char K. Thermally triggered self-assembly of κ-casein amyloid nanofibrils and their nanomechanical properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Dehullu J, Valotteau C, Herman-Bausier P, Garcia-Sherman M, Mittelviefhaus M, Vorholt JA, Lipke PN, Dufrêne YF. Fluidic Force Microscopy Demonstrates That Homophilic Adhesion by Candida albicans Als Proteins Is Mediated by Amyloid Bonds between Cells. NANO LETTERS 2019; 19:3846-3853. [PMID: 31038969 PMCID: PMC6638552 DOI: 10.1021/acs.nanolett.9b01010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fungal pathogen Candida albicans frequently forms drug-resistant biofilms in hospital settings and in chronic disease patients. Cell adhesion and biofilm formation involve a family of cell surface Als (agglutinin-like sequence) proteins. It is now well documented that amyloid-like clusters of laterally arranged Als proteins activate cell-cell adhesion under mechanical stress, but whether amyloid-like bonds form between aggregating cells is not known. To address this issue, we measure the forces driving Als5-mediated intercellular adhesion using an innovative fluidic force microscopy platform. Strong cell-cell adhesion is dependent on expression of amyloid-forming Als5 at high cell surface density and is inhibited by a short antiamyloid peptide. Furthermore, there is greatly attenuated binding between cells expressing amyloid-forming Als5 and cells with a nonamyloid form of Als5. Thus, homophilic bonding between Als5 proteins on adhering cells is the major mode of fungal aggregation, rather than protein-ligand interactions. These results point to a model whereby amyloid-like β-sheet interactions play a dual role in cell-cell adhesion, that is, in formation of adhesin nanoclusters ( cis-interactions) and in homophilic bonding between amyloid sequences on opposing cells ( trans-interactions). Because potential amyloid-forming sequences are found in many microbial adhesins, we speculate that this novel mechanism of amyloid-based homophilic adhesion might be widespread and could represent an interesting target for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Jérôme Dehullu
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Melissa Garcia-Sherman
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter N. Lipke
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 4000 Liege, Belgium
| |
Collapse
|
9
|
Mahmoudinobar F, Urban JM, Su Z, Nilsson BL, Dias CL. Thermodynamic Stability of Polar and Nonpolar Amyloid Fibrils. J Chem Theory Comput 2019; 15:3868-3874. [DOI: 10.1021/acs.jctc.9b00145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jennifer M. Urban
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Bradley L. Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L. Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|