1
|
Gradogna A, Lagostena L, Beltrami S, Tosato E, Picco C, Scholz-Starke J, Sparla F, Trost P, Carpaneto A. Tonoplast cytochrome b561 is a transmembrane ascorbate-dependent monodehydroascorbate reductase: functional characterization of electron currents in plant vacuoles. THE NEW PHYTOLOGIST 2023; 238:1957-1971. [PMID: 36806214 DOI: 10.1111/nph.18823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Ascorbate (Asc) is a major redox buffer of plant cells, whose antioxidant activity depends on the ratio with its one-electron oxidation product monodehydroascorbate (MDHA). The cytoplasm contains millimolar concentrations of Asc and soluble enzymes that can regenerate Asc from MDHA or fully oxidized dehydroascorbate. Also, vacuoles contain Asc, but no soluble Asc-regenerating enzymes. Here, we show that vacuoles isolated from Arabidopsis mesophyll cells contain a tonoplast electron transport system that works as a reversible, Asc-dependent transmembrane MDHA oxidoreductase. Electron currents were measured by patch-clamp on isolated vacuoles and found to depend on the availability of Asc (electron donor) and ferricyanide or MDHA (electron acceptors) on opposite sides of the tonoplast. Electron currents were catalyzed by cytochrome b561 isoform A (CYB561A), a tonoplast redox protein with cytoplasmic and luminal Asc binding sites. The Km for Asc of the luminal (4.5 mM) and cytoplasmic site (51 mM) reflected the physiological Asc concentrations in these compartments. The maximal current amplitude was similar in both directions. Mutant plants with impaired CYB561A expression showed no detectable trans-tonoplast electron currents and strong accumulation of leaf anthocyanins under excessive illumination, suggesting a redox-modulation exerted by CYB561A on the typical anthocyanin response to high-light stress.
Collapse
Affiliation(s)
| | - Laura Lagostena
- Institute of Biophysics - CNR, Via De Marini 6, 16149, Genova, Italy
| | - Sara Beltrami
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Edoardo Tosato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Cristiana Picco
- Institute of Biophysics - CNR, Via De Marini 6, 16149, Genova, Italy
| | | | - Francesca Sparla
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Armando Carpaneto
- Institute of Biophysics - CNR, Via De Marini 6, 16149, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genova, Italy
| |
Collapse
|
2
|
Gradogna A, Pardo JM, Carpaneto A. The phosphoinositide PI(3,5)P 2 inhibits the activity of plant NHX proton/potassium antiporters: Advantages of a novel electrophysiological approach. Biomol Concepts 2022; 13:119-125. [DOI: 10.1515/bmc-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
In the present work, we discuss the way in which the parallel application of the patch-clamp technique and the 2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence detection for recording luminal proton changes allows the functional characterization of nonelectrogenic potassium/proton vacuolar antiporters of the NHX (Na+/H+ exchanger) family. Moreover, we review the functional role of the tonoplast-specific phosphoinositide PI(3,5)P2, able to simultaneously inhibit the activity of NHXs and CLC-a transporters, whose coordinated action can play an important role in the water balance of plant cells.
Collapse
Affiliation(s)
- Antonella Gradogna
- Institute of Biophysics, National Research Council , Via De Marini 6 , 16149 Genova , Italy
| | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville , Seville 41092 , Spain
| | - Armando Carpaneto
- Department of Earth, Environment and Life Sciences (DISTAV) – University of Genoa , Viale Benedetto XV 5 , 16132 Genova , Italy
- Institute of Biophysics, National Research Council , Via De Marini 6 , 16149 Genova , Italy
| |
Collapse
|
3
|
Giacomazza D, Viappiani C, Cera ED, Musio C. SIBPA under the Tuscan sun: Introduction to the SIBPA XXIII Special Issue. Biophys Chem 2017; 229:1-4. [PMID: 28941613 DOI: 10.1016/j.bpc.2017.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/03/2023]
Abstract
The Italian Society for Pure and Applied Biophysics (SIBPA) held its XXIII National Congress in the gorgeous Tuscan town of Cortona, Italy, on September 18-21, 2016. This special issue features a selection of contributions from the Congress in the areas of molecular, applied, cellular and computational biophysics. Cutting-edge developments in nanoscale biophysics were introduced for the first time in the program. SIBPA continues its successful promotion of biophysical disciplines at the national and international levels, with added strength from its partnership with Biophysical Chemistry and Elsevier.
Collapse
Affiliation(s)
- Daniela Giacomazza
- CNR Institute of Biophysics, Unit at Palermo, Via U. La Malfa 153, Palermo, I
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, Parco Area delle Scienze 7A, 43124 Parma, I
| | - Enrico Di Cera
- Edward A. Doisy Dept. of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Carlo Musio
- CNR Institute of Biophysics, Unit at Trento, Via alla Cascata 56/C, 38123 Trento, I
| |
Collapse
|