1
|
Chohan DP, Biswas S, Wankhede M, Menon P, K A, Basha S, Rodrigues J, Mukunda DC, Mahato KK. Assessing Breast Cancer through Tumor Microenvironment Mapping of Collagen and Other Biomolecule Spectral Fingerprints─A Review. ACS Sens 2024; 9:4364-4379. [PMID: 39175278 PMCID: PMC11443534 DOI: 10.1021/acssensors.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.
Collapse
Affiliation(s)
- Diya Pratish Chohan
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Shimul Biswas
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mrunmayee Wankhede
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Poornima Menon
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Ameera K
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Shaik Basha
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | | | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
2
|
Damagatla V, Boetti NG, Di Sieno L, Bargigia I, Negretti F, Pugliese D, Janner D, Spinelli L, Farina A, Pifferi A. Use of bioresorbable fibers for short-wave infrared spectroscopy using time-domain diffuse optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:5041-5052. [PMID: 39296383 PMCID: PMC11407265 DOI: 10.1364/boe.531681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 09/21/2024]
Abstract
We demonstrate the usability of bioresorbable phosphate glass fibers for time-domain diffuse optical spectroscopy (TD-DOS) in the short-wave infrared (SWIR) region of 950-1600 nm, with the use of an InGaAs detector. Bioresorbable fibers for diffuse optics present an exciting prospect due to their ability to be left implanted while retrieving optical properties from deeper regions (few cm) for monitoring treatments. Extending TD-DOS to the SWIR region could be useful to better identify biomarkers such as water, lipids and collagen, given their increase in absorption in this range. We attempt to use the bioresorbable fibers to spectrally identify these biomarkers by measuring a series of biological samples known to contain them, such as porcine muscle, porcine fat and bone. We further validate our measurements by comparing the optical properties of high-scattering solid silicone phantoms retrieved with these bioresorbable fibers with those by a standard Si fiber.
Collapse
Affiliation(s)
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, Torino, Italy
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Ilaria Bargigia
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Fabio Negretti
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Diego Pugliese
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia and INSTM Research Unit, Torino, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy
| | - Davide Janner
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia and INSTM Research Unit, Torino, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| |
Collapse
|
3
|
Solomonov I, Locatelli I, Tortorella S, Unni M, Aharoni SL, Alchera E, Locatelli E, Maturi M, Venegoni C, Lucianò R, Salonia A, Corti A, Curnis F, Grasso V, Malamal G, Jose J, Comes Franchini M, Sagi I, Alfano M. Contrast enhanced photoacoustic detection of fibrillar collagen in the near infrared region-I. NANOSCALE ADVANCES 2024; 6:3655-3667. [PMID: 38989511 PMCID: PMC11232541 DOI: 10.1039/d4na00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
Fibrillar collagen accumulation emerges as a promising biomarker in several diseases, such as desmoplastic tumors and unstable atherosclerotic plaque. Gold nanorods (GNRs) hold great potential as contrast agents in high-resolution, biomedically safe, and non-invasive photoacoustic imaging (PAI). This study presents the design and characterization of a specialized imaging tool which exploits GNR assisted targeted photoacoustic imaging that is tailored for the identification of fibrillar collagen. In addition to the photoacoustic characterization of collagen in the NIR 1 and 2 regions, we demonstrate the detailed steps of conjugating a decoy to GNRs. This study serves as a proof of concept, that demonstrates that conjugated collagenase-1 (MMP-1) generates a distinct and collagen-specific photoacoustic signal, facilitating real-time visualization in the wavelength range of 700-970 nm (NIR I). As most of the reported studies utilized the endogenous contrast of collagen in the NIR II wavelength that has major limitations to perform in vivo deep tissue imaging, the approach that we are proposing is unique and it highlights the promise of MMP-1 decoy-functionalized GNRs as novel contrast agents for photoacoustic imaging of collagen in the NIR 1 region. To our knowledge this is the first time functionalized GNRs are optimized for the detection of fibrillar collagen and utilized in the field of non-invasive photoacoustic imaging that can facilitate a better prognosis of desmoplastic tumors and broken atherosclerotic plaques.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Manu Unni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shay-Lee Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Hospital and Scientific Institute Milan Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
- Vita-Salute San Raffaele University Milan Italy
| | - Angelo Corti
- Vita-Salute San Raffaele University Milan Italy
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute Milan Italy
| | - Flavio Curnis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute Milan Italy
| | - Valeria Grasso
- FUJIFILM Visualsonics Inc. Amsterdam the Netherlands
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel Kiel Germany
| | | | - Jithin Jose
- FUJIFILM Visualsonics Inc. Amsterdam the Netherlands
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
4
|
Kafian-Attari I, Nippolainen E, Bergmann F, Mirhashemi A, Paakkari P, Foschum F, Kienle A, Töyräs J, Afara IO. Impact of experimental setup parameters on the measurement of articular cartilage optical properties in the visible and short near-infrared spectral bands. BIOMEDICAL OPTICS EXPRESS 2023; 14:3397-3412. [PMID: 37497494 PMCID: PMC10368039 DOI: 10.1364/boe.488801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/28/2023]
Abstract
There is increasing research on the potential application of diffuse optical spectroscopy and hyperspectral imaging for characterizing the health of the connective tissues, such as articular cartilage, during joint surgery. These optical techniques facilitate the rapid and objective diagnostic assessment of the tissue, thus providing unprecedented information toward optimal treatment strategy. Adaption of optical techniques for diagnostic assessment of musculoskeletal disorders, including osteoarthritis, requires precise determination of the optical properties of connective tissues such as articular cartilage. As every indirect method of tissue optical properties estimation consists of a measurement step followed by a computational analysis step, there are parameters associated with these steps that could influence the estimated values of the optical properties. In this study, we report the absorption and reduced scattering coefficients of articular cartilage in the spectral band of 400-1400 nm. We assess the impact of the experimental setup parameters, including surrounding medium, sample volume, and scattering anisotropy factor on the reported optical properties. Our results suggest that the absorption coefficient of articular cartilage is sensitive to the variation in the surrounding medium, whereas its reduced scattering coefficient is invariant to the experimental setup parameters.
Collapse
Affiliation(s)
- Iman Kafian-Attari
- Department of Technical Physics, University of Eastern Finland, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Finland
| | - Ervin Nippolainen
- Department of Technical Physics, University of Eastern Finland, Finland
| | - Florian Bergmann
- Institute for Laser Technologies in Medicine and Meteorology, University of Ulm, Germany
| | - Arash Mirhashemi
- Department of Technical Physics, University of Eastern Finland, Finland
| | - Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Finland
| | - Florian Foschum
- Institute for Laser Technologies in Medicine and Meteorology, University of Ulm, Germany
| | - Alwin Kienle
- Institute for Laser Technologies in Medicine and Meteorology, University of Ulm, Germany
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Finland
- Science Service Center, Kuopio University Hospital, Finland
- School of Information Technology and Electrical Engineering, University of Queensland, Australia
| | - Isaac O. Afara
- Department of Technical Physics, University of Eastern Finland, Finland
- School of Information Technology and Electrical Engineering, University of Queensland, Australia
| |
Collapse
|
5
|
Dumlupinar G, Venkata Sekar SK, Guadagno CN, Matias JS, Lanka P, Kho CK, Andersson-Engels S. Solid optical tissue phantom tools based on upconverting nanoparticles for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036004. [PMID: 36915372 PMCID: PMC10006686 DOI: 10.1117/1.jbo.28.3.036004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Phantoms play a critical role in the development of biophotonics techniques. There is a lack of novel phantom tools in the emerging field of upconverting nanoparticles (UCNPs) for biophotonics application. This work provides a range of UCNP-based phantom tools and a manufacturing recipe to bridge the gap and accelerate the development of UCNP-based biophotonics applications. AIM The study aims to provide a well-characterized UCNP-based solid phantom recipe and set of phantom tools to address a wide range of UCNP-based biophotonics applications. APPROACH A solid phantom recipe based on silicone matrix was developed to manufacture UCNP-based phantoms. A lab built UCNP imaging system was used to characterize upconverted fluorescence emission of phantoms for linearity, homogeneity, and long-term stability. A photon time-of-flight spectroscopy technique was used to characterize the optical properties of the phantoms. RESULTS In total, 24 phantoms classified into 4 types, namely homogeneous, multilayer, inclusion, and base phantoms, were manufactured. The phantoms exhibit linear behavior over the dosage range of UCNPs. The phantoms were found to be stable over a limited observed period of 4 months with a coefficient of variation of < 4 % . The deep tissue imaging case showed that increasing the thickness of tissue reduced the UCNP emission. CONCLUSIONS A first-of-its-kind UCNP-based solid phantom recipe was developed, and four types of UCNP phantom tools to explore biophotonics applications were presented. The UCNP phantoms exhibited a linear behavior with dosage and were stable over time. An example case showed the potential use of the phantom for deep tissue imaging applications. With recent advance in the use of UCNPs for biophotonics, we believe our recipe and tools will play a pivotal role in the growth of the UCNPs for biophotonics applications.
Collapse
Affiliation(s)
- Gokhan Dumlupinar
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| | | | | | - Jean S. Matias
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| | - Pranav Lanka
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
| | - Chris K.W. Kho
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
| | - Stefan Andersson-Engels
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
6
|
Stridh MT, Hult J, Merdasa A, Albinsson J, Pekar-Lukacs A, Gesslein B, Dahlstrand U, Engelsberg K, Berggren J, Cinthio M, Sheikh R, Malmsjö M. Photoacoustic imaging of periorbital skin cancer ex vivo: unique spectral signatures of malignant melanoma, basal, and squamous cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2022; 13:410-425. [PMID: 35154881 PMCID: PMC8803040 DOI: 10.1364/boe.443699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Radical excision of periorbital skin tumors is difficult without sacrificing excessive healthy tissue. Photoacoustic (PA) imaging is an emerging non-invasive biomedical imagi--ng modality that has potential for intraoperative micrographic control of surgical margins. This is the first study to assess the feasibility of PA imaging for the detection of periocular skin cancer. Eleven patients underwent surgical excision of periocular skin cancer, one of which was a malignant melanoma (MM), eight were basal cell carcinomas (BCCs), and two squamous cell carcinomas (SCCs). Six tumors were located in the eyelid, and five in periocular skin. The excised samples, as well as healthy eyelid samples, were scanned with PA imaging postoperatively, using 59 wavelengths in the range 680-970 nm, to generate 3D multispectral images. Spectral unmixing was performed using endmember spectra for oxygenated and deoxygenated Hb, melanin, and collagen, to iden--tify the chromophore composition of tumors and healthy eyelid tissue. After PA scanning, the tumor samples were examined histopathologically using standard hematoxylin and eosin staining. The PA spectra of healthy eyelid tissue were dominated by melanin in the skin, oxygenated and deoxygenated hemoglobin in the orbicularis oculi muscle, and collagen in the tarsal plate. Multiwavelength 3D scanning provided spectral information on the three tumor types. The spectrum from the MM was primarily reconstructed by the endmember melanin, while the SCCs showed contributions primarily from melanin, but also HbR and collagen. BCCs showed contributions from all four endmembers with a predominance of HbO2 and HbR. PA imaging may be used to distinguish different kinds of periocular skin tumors, paving the way for future intraoperative micrographic control.
Collapse
Affiliation(s)
- Magne Tordengren Stridh
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Jenny Hult
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Aboma Merdasa
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - John Albinsson
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | | | - Bodil Gesslein
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Karl Engelsberg
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Johanna Berggren
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering,
Faculty of Engineering, Lund University,
Sweden
| | - Rafi Sheikh
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Malin Malmsjö
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| |
Collapse
|
7
|
Ex Vivo Determination of Broadband Absorption and Effective Scattering Coefficients of Porcine Tissue. PHOTONICS 2021. [DOI: 10.3390/photonics8090365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel approach for precise determination of the optical scattering and absorption properties of porcine tissue using an optimized integrating sphere setup was applied. Measurements on several sample types (skin, muscle, adipose tissue, bone, cartilage, brain) in the spectral range between 400 nm and 1400 nm were performed. Due to the heterogeneity of biological samples, measurements on different individual animals as well as on different sections for each sample type were carried out. For all samples, we used an index matching method to reduce surface roughness effects and to prevent dehydration. The derived absorption spectra were used to estimate the concentration of important tissue chromophores such as water, oxy- and deoxyhemoglobin, collagen and fat.
Collapse
|
8
|
The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical techniques based on diffuse optics have been around for decades now and are making their way into the day-to-day medical applications. Even though the physics foundations of these techniques have been known for many years, practical implementation of these technique were hindered by technological limitations, mainly from the light sources and/or detection electronics. In the past 20 years, the developments of supercontinuum laser (SCL) enabled to unlock some of these limitations, enabling the development of system and methodologies relevant for medical use, notably in terms of spectral monitoring. In this review, we focus on the use of SCL in biomedical diffuse optics, from instrumentation and methods developments to their use for medical applications. A total of 95 publications were identified, from 1993 to 2021. We discuss the advantages of the SCL to cover a large spectral bandwidth with a high spectral power and fast switching against the disadvantages of cost, bulkiness, and long warm up times. Finally, we summarize the utility of using such light sources in the development and application of diffuse optics in biomedical sciences and clinical applications.
Collapse
|
9
|
Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents recent developments and a wide overview of broadband time domain diffuse optical spectroscopy (TD-DOS). Various topics including physics of photon migration, advanced instrumentation, methods of analysis, applications covering multiple domains (tissue chromophore, in vivo studies, food, wood, pharmaceutical industry) are elaborated. The key role of standardization and recent studies in that direction are discussed. Towards the end, a brief outlook is presented on the current status and future trends in broadband TD-DOS.
Collapse
|
10
|
Sekar SKV, Pacheco A, Martella P, Li H, Lanka P, Pifferi A, Andersson-Engels S. Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms. BIOMEDICAL OPTICS EXPRESS 2019; 10:2090-2100. [PMID: 31061772 PMCID: PMC6484985 DOI: 10.1364/boe.10.002090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 05/19/2023]
Abstract
We present a tissue mimicking optical phantom recipe to create robust well tested solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres (scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was characterized over a broadband spectrum (600-1100 nm) for a wide range of optical properties (absorption 0.1-1 cm-1, reduced scattering 5-25 cm-1) that are relevant to human organs. The results of linearity show a proper scaling of optical properties as well as the absence of coupling between the absorber and scatterer at different concentrations. A reproducibility of 4% among different preparations was obtained, with a similar grade of spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of our work that is 3D printing human organs of biomedical relevance.
Collapse
Affiliation(s)
| | - Andrea Pacheco
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Pierluigi Martella
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Haiyang Li
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- School of Mechanical Engineering and Automation, Northeastern University, China
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Stefan Andersson-Engels
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
11
|
Konugolu Venkata Sekar S, Mosca S, Tannert S, Valentini G, Martelli F, Binzoni T, Prokazov Y, Turbin E, Zuschratter W, Erdmann R, Pifferi A. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media. OPTICS LETTERS 2018; 43:2134-2137. [PMID: 29714764 DOI: 10.1364/ol.43.002134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 05/25/2023]
Abstract
We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.
Collapse
|