1
|
Akcay Ogur F, Mamasoglu S, Perry SL, Akin FA, Kayitmazer AB. Interactions between Hyaluronic Acid and Chitosan by Isothermal Titration Calorimetry: The Effect of Ionic Strength, pH, and Polymer Molecular Weight. J Phys Chem B 2024; 128:9022-9035. [PMID: 39248492 DOI: 10.1021/acs.jpcb.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Hyaluronic acid (HA)/chitosan (CHI) complex coacervates have recently gained interest due to the pH-dependent ionization and semiflexibility of the polymers as well as their applicability in tissue engineering. Here, we apply isothermal titration calorimetry (ITC) to understand the apparent thermodynamics of coacervation for HA/CHI as a function of the pH, ionic strength, and chain length. We couple these ITC experiments with the knowledge of the charge states of HA and CHI from potentiometric titration to understand the mechanistic aspects of complex formation. Our data demonstrate that the driving force for the complex coacervation of HA and CHI is entropic in nature and this driving force decreased with increasing ionic strength. We also observed a decrease in the stoichiometry for ion-pairing with increasing ionic strength, which we suggest is a consequence of the changing degree of ionization for HA at higher ionic strengths. An increase in the strength of interactions with pH was hypothesized to also be a result of changes in the degree of ionization of HA, though stronger interactions were observed at the lowest pH tested, likely due to contributions from hydrogen bonding between HA and CHI.
Collapse
Affiliation(s)
- Fatma Akcay Ogur
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - Sezin Mamasoglu
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Fatma Ahu Akin
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - A Basak Kayitmazer
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| |
Collapse
|
2
|
Bento-Oliveira A, Starosta R, de Almeida RFM. Interaction of the antifungal ketoconazole and its diphenylphosphine derivatives with lipid bilayers: Insights into their antifungal action. Arch Biochem Biophys 2024; 753:109919. [PMID: 38307316 DOI: 10.1016/j.abb.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Radosław Starosta
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Daoui O, Mali SN, Elkhattabi K, Elkhattabi S, Chtita S. Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations. Heliyon 2023; 9:e15545. [PMID: 37128337 PMCID: PMC10148140 DOI: 10.1016/j.heliyon.2023.e15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
- Corresponding author.
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, India, 835215
| | - Kaouakeb Elkhattabi
- Department of Fundamental Sciences, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| |
Collapse
|
4
|
Pietrzak M, Szabelski M, Wołąkiewicz G, Wieczorek Z. Spectroscopy studies of interaction hypericin with an anti-cancer therapy drug doxorubicin. Biophys Chem 2022; 288:106858. [PMID: 35905651 DOI: 10.1016/j.bpc.2022.106858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
The presented study was designed to estimate the ability of hypericin to interact with the anticancer drug doxorubicin. The hetero-association of hypericin and doxorubicin was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO in two-component mixtures: doxorubicin-hypericin and three component mixtures: DNA-doxorubicin-hypericin. The data indicate that hypericin forms complexes with doxorubicin and that the association constants are on the order of 300,000 M-1 in a buffer with 30% DMSO content. The absorption spectra of the hypericin - doxorubicin complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule to detoxification of patients after chemotherapy.
Collapse
Affiliation(s)
- Monika Pietrzak
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Mariusz Szabelski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Grzegorz Wołąkiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Zbigniew Wieczorek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Fischer M, Müller P, Scheidt HA, Luck M. Drug-Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers. Biochemistry 2022; 61:1392-1403. [PMID: 35731976 DOI: 10.1021/acs.biochem.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The two RNA-dependent RNA polymerase inhibitors remdesivir and favipiravir were originally developed and approved as broad-spectrum antiviral drugs for the treatment of harmful viral infections such as Ebola and influenza. With the outbreak of the global SARS-CoV-2 pandemic, the two drugs were repurposed for the treatment of COVID-19 patients. Clinical studies suggested that the efficacy of the drugs is enhanced in the case of an early or even prophylactic application. Because the contact between drug molecules and the plasma membrane is essential for a successful permeation process of the substances and therefore for their intracellular efficiency, drug-induced effects on the membrane structure are likely and have already been shown for other substances. We investigated the impact of remdesivir and favipiravir on lipid bilayers in model and cell membranes via several biophysical approaches. The measurements revealed that the embedding of remdesivir molecules in the lipid bilayer results in a disturbance of the membrane structure of the tested phospholipid vesicles. Nevertheless, in a cell-based assay, the presence of remdesivir induced only weak hemolysis of the treated erythrocytes. In contrast, no experimental indication for an effect on the structure and integrity of the membrane was detected in the case of favipiravir. Regarding potential prophylactic or accompanying use of the drugs in the therapy of COVID-19, the physiologically relevant impacts associated with the drug-induced structural modifications of the membrane might be important to understand side effects and/or low effectivities.
Collapse
Affiliation(s)
- Markus Fischer
- Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| | - Peter Müller
- Institute of Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| | - Meike Luck
- Institute of Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
6
|
Zong W, Shao X, Chai Y, Wang X, Han S, Chu H, Zhu C, Zhang X. Liposomes encapsulating artificial cytosol as drug delivery system. Biophys Chem 2021; 281:106728. [PMID: 34864227 DOI: 10.1016/j.bpc.2021.106728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The fabrication of cell models containing artificial cytosol is challenging. Herein we constructed an artificial cytosol contained cell model by electroformation method. Agarose was selected as the main component of the artificial cytosol, and sucrose was added into the agarose to regulate the sol viscosity and the phase transition temperature. The viscosity of the sol with the mass ratio (agarose-sucrose) 1:9 was closest to the natural cytosol. DSPC/20 mol% cholesterol was used to form large unilamellar vesicles (LUVs) as cell model compartment. The rhodamine release experiment confirmed that the unique release profile of agarose-sucrose@LUVs is suitable as a drug carrier. Doxorubicin is loaded in the agarose-sucrose@LUVs, and their half maximum inhibition concentration on HeLa cells is 0.016 μmol L-1, which means 28.7 times increase in inhibition efficiency over free doxorubicin.
Collapse
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China.
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Xiuwen Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Chuntao Zhu
- School of Chemistry Engineering, Northeast Electric Power University, No.169, ChangChun Road, Jilin 132012, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| |
Collapse
|