1
|
Samal S, Meher RK, Das PK, Swain SK, Dubey D, Khan MS, Jali BR. Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from Pterocarpus marsupium bark extract against oral squamous cell carcinoma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:512-528. [PMID: 39449641 DOI: 10.1080/21691401.2024.2416951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of Pterocarpus marsupium, followed by its characterization and in vitro anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through in vitro assays. The IC50 value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.
Collapse
Affiliation(s)
- Smrutipragnya Samal
- Department of Otorhinolaryngology and Head and Neck Surgery, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, India
| | - Pratyush Kumar Das
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Debasmita Dubey
- Medical Research Laboratory, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| |
Collapse
|
2
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
3
|
Pem B, Liu Q, Pašalić L, Edely M, de la Chapelle ML, Bakarić D. Uncoated gold nanoparticles create fewer and less localized defects in model prokaryotic than in model eukaryotic lipid membranes. Colloids Surf B Biointerfaces 2024; 243:114158. [PMID: 39137531 DOI: 10.1016/j.colsurfb.2024.114158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The rise of the populations of antibiotic resistant bacteria represents an increasing threat to human health. In addition to the synthesis of new antibiotics, which is an extremely expensive and time-consuming process, one of the ways to combat bacterial infections is the use of gold nanoparticles (Au NPs) as the vehicles for targeted delivery of therapeutic drugs. Since such a strategy requires the investigation of the effect of Au NPs (with and without drugs) on both bacterial and human cells, we investigated how the presence of coating-free Au NPs affects the physicochemical properties of lipid membranes that model prokaryotic (PRO) and eukaryotic (EU) cells. PRO/EU systems prepared as multilamellar liposomes (MLVs) and hybrid structures (HSs) from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG)/1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) in the absence (MLVs)/presence (HSs) of differently distributed Au NPs (sizes ∼20 nm) reported stabilization of the gel phase of PRO systems in comparison with EU one (DSC data of PRO/EU were Tm(MLVs) ≈ 41.8 °C/42.0 °C, Tm¯ (HSs) ≈ 43.1 °C/42.4 °C, whereas UV-Vis response Tm(MLVs) ≈ 41.5 °C/42.0 °C, Tm¯ (HSs) ≈ 42.9 °C/41.1 °C). Vibrational spectroscopic data unraveled a substantial impact of Au NPs on the non-polar part of lipid bilayers, emphasizing the increase of kink and gauche conformers of the hydrocarbon chain. By interpreting the latter as Au NPs-induced defects, which exert the greatest effect when Au NPs are found exclusively outside the lipid membrane, these findings suggested that Au NPs reduced the compactness of EU-based lipid bilayers much more than in analogous PRO systems. Since the uncoated Au NPs manifested adverse effects when applied as antimicrobials, the results obtained in this work contribute towards recognizing AuNP functionalization as a strategy in tuning and reversing this effect.
Collapse
Affiliation(s)
- Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Qiqian Liu
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Mathieu Edely
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Marc Lamy de la Chapelle
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
4
|
Lavrič M, Bar L, Villanueva ME, Losada-Pérez P, Iglič A, Novak N, Cordoyiannis G. Assessing the Quality of Solvent-Assisted Lipid Bilayers Formed at Different Phases and Aqueous Buffer Media: A QCM-D Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:6093. [PMID: 39338837 PMCID: PMC11435612 DOI: 10.3390/s24186093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence of several parameters on the quality of SLBs formed on Au- and SiO2-coated sensors. The influence of the aqueous medium (i.e., buffer type) and the adsorption temperature, above and below the lipid melting point, is neatly explored for SLBs of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine formed by a solvent exchange. Below the lipid melting temperature, quality variations are observed upon the formation on Au and SiO2 surfaces, with the SLBs being more homogeneous for the latter. We further investigate how the buffer affects the detection of lipid melting in SLBs, a transition that necessitates high-sensitivity and time-consuming surface-sensitive techniques to be detected.
Collapse
Affiliation(s)
- Marta Lavrič
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.L.); (N.N.)
| | - Laure Bar
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Martin E. Villanueva
- Experimental Soft Matter and Thermal Physics Group, Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.E.V.); (P.L.-P.)
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics Group, Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.E.V.); (P.L.-P.)
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Nikola Novak
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.L.); (N.N.)
| | - George Cordoyiannis
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.L.); (N.N.)
| |
Collapse
|
5
|
Mateos H, Mallardi A, Oliver M, Dell'Aglio M, Giannone P, Palazzo G. Cooperative aggregation of gold nanoparticles on phospholipid vesicles is electrostatically driven. Phys Chem Chem Phys 2024; 26:23103-23115. [PMID: 39177151 DOI: 10.1039/d4cp02060j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Gold nanoparticles (AuNP) are known to aggregate on the surface of lipid vesicles, yet the molecular mechanism behind this phenomenom remains unclear. In this work, we have investigated the binding behaviour of AuNPs, synthesized with pulsed laser ablation, to phospholipid vesicles under varying conditions of ionic strength (KCl concentration) and NP to vesicle ratios. Our observations reveal a strong influence of electrolyte concentration on AuNP aggregation mediated by vesicles. Notably, cluster formation is observed even at less than one AuNP per vesicle ratio at low enough ionic strengths. These results evidence a binding mechanism governed by electrostatic attraction with a distinct cooperative behaviour at very low salt concentrations, resulting in a significant increase in nanoparticle clustering. This behaviour is quantitatively analysed through a model that incorporates the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, considering the electrical double layer attraction between dissimilar, non-oppositely charged objects. This study not only provides insight into the fundamental understanding of nanoparticle-vesicle interactions but also suggests potential strategies for controlling nanoparticle assembly in biological and synthetic systems by tuning the ionic strength.
Collapse
Affiliation(s)
- Helena Mateos
- Dipartimento di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari "Aldo Moro", via Orabona n. 4, 70125 Bari, Italy.
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Marcella Dell'Aglio
- CNR-IFN (National Research Council - Institute for Photonics and Nanotechnologies), c/o Physics Department, University of Bari, Via Amendola 173, 70126 Bari, Italy
| | - Pamela Giannone
- Dipartimento di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari "Aldo Moro", via Orabona n. 4, 70125 Bari, Italy.
| | - Gerardo Palazzo
- Dipartimento di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari "Aldo Moro", via Orabona n. 4, 70125 Bari, Italy.
| |
Collapse
|
6
|
da Silva W, Guedes EAB, Faustino LC, Goulart MOF, Gerôncio ETS. Tailored electrochemical biosensor with poly-diallydimethylammonium chloride-functionalised multiwalled carbon nanotubes/gold nanoparticles/manganese dioxide, and haemoglobin for sensitive hydrogen peroxide detection. Talanta 2024; 276:126290. [PMID: 38805755 DOI: 10.1016/j.talanta.2024.126290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
A very sensitive electrochemical biosensor, with haemoglobin (Hb) as its basis, has been created to quantify hydrogen peroxide (H2O2), an essential marker in environmental monitoring, food safety, and medical diagnosis. The sensor uses a simple, eco-friendly preparation method. Hb was immobilised on manganese dioxide nanostructure/gold nanoparticles/poly-diallydimethylammonium chloride-functionalised multiwalled carbon nanotubes (PDDA-MWCNT/AuNP/MnO2), characterised using various techniques: amperometry, voltammetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Nafion was used as a binder membrane to preserve the biological and electrochemical properties of the protein on the modified electrode. In comparison to earlier research, the novel biosensor had a lower detection limit (1.83 μM) and a limit of quantification (6.11 μM) (S/N = 3) for H2O2. It also exhibited notable reproducibility, long-term stability, and repeatability. It was effectively used to measure the amount of H2O2 in cow milk and orange juice, yielding recoveries in the order of 98.90-99.53 % with RSDs less than 5.0 %, which makes it a promising biosensor for food control.
Collapse
Affiliation(s)
- Wanderson da Silva
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil; Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550, Piauí, Brazil.
| | - Erik A B Guedes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil.
| | - Lucas C Faustino
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550, Piauí, Brazil.
| | - Marília O F Goulart
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil.
| | - Everson Thiago S Gerôncio
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550, Piauí, Brazil.
| |
Collapse
|
7
|
Rojewska M, Adamska K, Kurnatowska J, Miklaszewski A, Bartkowska A, Prochaska K. Preparation of Thin Films Containing Modified Hydroxyapatite Particles and Phospholipids (DPPC) for Improved Properties of Biomaterials. Molecules 2023; 28:7843. [PMID: 38067571 PMCID: PMC10708029 DOI: 10.3390/molecules28237843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The main aims of thin biofilm synthesis are to either achieve a new form to promote the transport of drugs in oral delivery systems or as a coating to improve the biocompatibility of the implant's surface. In this study, the Langmuir monolayer technique was employed to obtain films containing Mg-doped hydroxyapatite with 0.5%, 1.0%, and 1.5% Mg(II). The obtained modified HA particles were analysed via the FT-IR, XRD, DLS, and SEM methods. It was shown that the modified hydroxyapatite particles were able to form thin films at the air/water interface. BAM microscopy was employed to characterized the morphology of these films. In the next step, the mixed films were prepared using phospholipid (DPPC) molecules and modified hydroxyapatite particles (HA-Mg(II)). We expected that the presence of phospholipids (DPPC) in thin films improved the biocompatibility of the preparing films, while adding HA-Mg(II) particles will promote antibacterial properties and enhance osteogenesis processes. The films were prepared in two ways: (1) by mixing DPPC and HA-Mg (II) and spreading this solution onto the subphase, or (2) by forming DPPC films, dropping the HA-Mg (II) dispersion onto the phospholipid monolayer. Based on the obtained π-A isotherms, the surface parameters of the achieved thin films were estimated. It was observed that the HA-Mg(II) films can be stabilized with phospholipid molecules, and a more stable structure was obtained from films synthesied via method (2).
Collapse
Affiliation(s)
- Monika Rojewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| | - Katarzyna Adamska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| | - Justyna Kurnatowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| | - Andrzej Miklaszewski
- Institute of Material Science, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznań, Poland; (A.M.); (A.B.)
| | - Aneta Bartkowska
- Institute of Material Science, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznań, Poland; (A.M.); (A.B.)
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| |
Collapse
|
8
|
Kadu K, Kowshik M, Ramanan SR. Tailoring of hydroxyapatite nanoparticle surfaces of varying morphologies to facilitate counterion diffusion and subsequent protein denaturation. Biophys Chem 2023; 296:106979. [PMID: 36863072 DOI: 10.1016/j.bpc.2023.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Rapid advances in nanotechnology have led to the synthesis and development of various nanomaterials with complex structures and appropriate surface functionalization in recent years. Specifically designed and functionalized nanoparticles (NPs) are increasingly researched and hold great potential in biomedical applications (for example, imaging, diagnostics and therapeutics). Yet, the surface functionalization and biodegradability of NPs play a significant role in their application. Understanding the interactions occurring at the interface between the NPs and the biological components is thus crucial for predicting the fate of the NPs. In this work we study the effect of trilithium citrate functionalization of the hydroxyapatite NPs (HAp NPs) with and without cysteamine modification and their subsequent interaction with hen egg white lysozyme and corroborate the conformational changes of the protein with effective diffusion of the lithium (Li+) counter ion.
Collapse
Affiliation(s)
- Kavita Kadu
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, India
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, India
| | - Sutapa Roy Ramanan
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, India.
| |
Collapse
|