1
|
Thomas N, Combs W, Mandadapu KK, Agrawal A. Preferential electrostatic interactions of phosphatidic acid with arginines. SOFT MATTER 2024; 20:2998-3006. [PMID: 38482724 DOI: 10.1039/d4sm00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Phosphatidic acid (PA) is an anionic lipid that preferentially interacts with proteins in a diverse set of cellular processes such as transport, apoptosis, and neurotransmission. One such interaction is that of the PA lipids with the proteins of voltage-sensitive ion channels. In comparison to several other similarly charged anionic lipids, PA lipids exhibit much stronger interactions. Intrigued and motivated by this finding, we sought out to gain deeper understanding into the electrostatic interactions of anionic lipids with charged proteins. Using the voltage sensor domain (VSD) of the KvAP channel as a model system, we performed long-timescale atomistic simulations to analyze the interactions of POPA, POPG, and POPI lipids with arginines (ARGs). Our simulations reveal two mechanisms. First, POPA is able to interact not only with surface ARGs but is able to snorkel and interact with a buried arginine. POPG and POPI lipids on the other hand show weak interactions even with both the surface and buried ARGs. Second, deprotonated POPA with -2 charge is able to break the salt-bridge connection between VSD protein segments and establish its own electrostatic bond with the ARG. Based on these findings, we propose a headgroup size hypothesis for preferential solvation of proteins by charged lipids. These findings may be valuable in understanding how PA lipids could be modulating kinematics of transmembrane proteins in cellular membranes.
Collapse
Affiliation(s)
- Nidhin Thomas
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Wesley Combs
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Kranthi K Mandadapu
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Benabdelkamel H, Jaber MA, Akkour K, AlMalki RH, Alfadda AA, Masood A, Joy SS, Alhalal H, Alwehaibi MA, Arafah M, Alshehri E, Abdel Rahman AM. Metabolomic Profiling of Blood Plasma in Females with Hyperplasia and Endometrial Cancer. Metabolites 2024; 14:109. [PMID: 38393001 PMCID: PMC10890097 DOI: 10.3390/metabo14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Uterine cancer is the most prevalent gynecologic malignancy in women worldwide. Endometrial cancer (EC) has an 81% five-year survival rate, depending on disease stage and time of diagnosis. While endometrial cancer is largely treatable when detected early, no established screening techniques are available in clinical practice. As a result, one of the most significant issues in the medical field is the development of novel ways for early cancer identification, which could boost treatment success rates. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based metabolomics was employed to explore the metabolomic markers and pathways unique to this cancer type and link them to the benign endometrial hyperplasia that may progress to cancer in 5% to 25% of patients. The study involved 59 postmenopausal participants, 20 with EC type 1, 20 with benign hyperplasia, and 19 healthy participants. Metabolite distribution changes were analyzed, and 338 of these features were dysregulated and significant. The first two main components, PC1 and PC2, were responsible for 11.5% and 12.2% of the total metabolites, respectively. Compared with the control group (CO), EC samples had 203 differentially expressed metabolites (180 upregulated and 23 downregulated); in hyperplasia (HP), 157 metabolites were dysregulated (127 upregulated and 30 downregulated) compared to the CO group while 21 metabolites exhibited differential regulation (16 upregulated and 5 downregulated) in EC plasma samples compared to the HP group. Hyperplasia samples exhibited similar metabolic changes to those reported in cancer, except for alterations in triglyceride levels, 7a,12 b-dihydroxy-5b-Cholan-24-oic acid, and Hept-2-enedioyl carnitine levels. The metabolites N-heptanoyl glycine and -(Methylthio)-2,3-isopentyl phosphate and formimino glutamic acid can be specific markers for hyperplasia conditions and dimethyl phosphatidyl ethanolamine and 8-isoprostaglandin E2 can be specific markers for EC conditions. Metabolic activities rely on mitochondrial oxidative phosphorylation for energy generation. The changes in metabolites identified in our study indicate that endometrial cancer cells adopt alternative strategies to increase energy production to meet the energy demand, thereby supporting proliferation.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Malak A Jaber
- Pharmaceutical Medicinal Chemistry & Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 1196, Jordan
| | - Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem H AlMalki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Salini Scaria Joy
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Moudi A Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Eman Alshehri
- Obstetrics and Gynecology Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| |
Collapse
|