1
|
Qiu S, Jin L, Yang D, Zhang D. MTHFR and MTRR gene polymorphisms in patients with chronic hepatitis B virus infections in Zigong, Sichuan Province. Ann Hum Biol 2024; 51:2330926. [PMID: 38634541 DOI: 10.1080/03014460.2024.2330926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a severe disease affecting the physical and economic well-being of patients. The relationship between polymorphisms in the MTHFR gene and disease progression following HBV infection remains a controversial topic. AIM To study MTHFR and MTRR gene polymorphisms in patients with chronic HBV infections in Zigong, Sichuan Province. SUBJECTS AND METHODS One hundred and ninety-one patients with chronic HBV infections were divided into three groups: the chronic hepatitis B (CHB) group (n = 71), the hepatitis B-induced liver cirrhosis (LC) group (n = 56), and the hepatitis B-related primary liver cancer (PLC) group (n = 64). The gene polymorphisms were detected using the PCR-melt curve method and analysed. RESULTS The distributions of MTHFR C677T (CC: 41.2% vs. 41.8%; CT: 50% vs. 45.5%; TT: 8.8% vs. 12.7%; p = 0.714), MTHFR A1298C (AA: 70.6% vs. 72.7%; AC: 26.5% vs. 25.5%; CC: 2.9% vs. 1.8%; p = 1.000), and MTRR A66G (AA: 58.1% vs. 65.5%; AG: 39.0% vs. 29.1%; 2.9% vs. 5.5%; p = 0.353) genetic polymorphisms did not vary between male and female patients from Zigong. In addition, there were no differences in the distributions of MTHFR C677T (CC: 43.4% vs. 38.8%; CT: 49.1% vs. 48.2%; TT: 7.5% vs. 12.9%; p = 0.444), MTHFR A1298C (AA: 76.4% vs. 64.7%; AC: 20.8% vs. 32.9%; CC: 2.8% vs. 2.4%; p = 0.155), and MTRR A66G (AA: 62.3% vs. 57.6%; AG: 34.0% vs. 38.8%; 3.8% vs. 3.5%; p = 0.353) genetic polymorphisms between the patients <60 and >60 years of age. The distributions of MTHFR C677T (CHB vs. LC, p = 0.888; CHB vs. PLC, p = 0.661; PLC vs. LC, p = 0.926), MTHFR A1298C (CHB vs. LC, p = 0.12; CHB vs. PLC, p = 0.263; PLC vs. LC, p = 0.550), and MTRR A66G (CHB vs. LC, p = 0.955; CHB vs. PLC, p = 0.645; PLC vs. LC, p = 0.355) gene polymorphisms were comparable between the CHB, LC, and PLC groups. CONCLUSION The distributions of MTHFR and MRRR genetic polymorphisms in the population with HBV infections in Zigong, Sichuan Province did not differ in age and sex. The MTHFR and MRRR genetic polymorphisms were comparable between the CHB, LC, and PLC groups.
Collapse
Affiliation(s)
- Shunhua Qiu
- Department of Clinical Laboratory, Zigong Third People's Hospital, Zigong City, Sichuan Province, P.R. China
| | - Lifen Jin
- Department of Clinical Pharmacy, Zigong Third People's Hospital, Zigong City, Sichuan Province, P.R. China
| | - Dan Yang
- Department of Clinical Laboratory, Zigong Third People's Hospital, Zigong City, Sichuan Province, P.R. China
| | - Dewen Zhang
- Department of Clinical Laboratory, Zigong Third People's Hospital, Zigong City, Sichuan Province, P.R. China
| |
Collapse
|
2
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
3
|
Yu S, Wang J, Zheng H, Wang R, Johnson N, Li T, Li P, Lin J, Li Y, Yan J, Zhang Y, Zhu Z, Ding X. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J Hepatocell Carcinoma 2022; 9:855-867. [PMID: 36051860 PMCID: PMC9426868 DOI: 10.2147/jhc.s377768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. As opposed to the majority of patients with HCC, approximately 20–30% of cases of non-alcoholic steatohepatitis (NASH)-derived HCC develop malignant tumours in the absence of liver cirrhosis. NASH is characterized by metabolic dysregulation, chronic inflammation and cell death in the liver, which provide a favorable setting for the transformation of inflammation into cancer. This review aims to describe the pathogenesis and the underlying mechanism of the transition from inflammation to cancer in NASH.
Collapse
Affiliation(s)
- Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ruilin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jin Yan
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Centre of Research for Traditional Chinese Medicine Digestive, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
4
|
Zhang X, Guan L, Tian H, Zeng Z, Chen J, Huang D, Sun J, Guo J, Cui H, Li Y. Risk Factors and Prevention of Viral Hepatitis-Related Hepatocellular Carcinoma. Front Oncol 2021; 11:686962. [PMID: 34568017 PMCID: PMC8458967 DOI: 10.3389/fonc.2021.686962] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer in the world, and its incidence is increasing yearly. Hepatitis B virus (HBV) infection and hepatitis C virus (HCV) infection are important causes of HCC. Liver cirrhosis, age, sex, smoking and drinking, and metabolic risk factors will increase the risk of cancer in HBV/HCV patients. And viral load, APRI, FIB-4, and liver stiffness can all predict the risk of HCC in patients with viral infection. In addition, effective prevention strategies are essential in reducing the risk of HCC. The prevention of HCC involves mainly tertiary prevention strategies, while the primary prevention is based on standardized vaccine injections to prevent the occurrence of HBV/HCV. Eliminating the route of transmission and vaccination will lead to a decrease in the incidence of HCC. Secondary prevention involves effective antiviral treatment of HBV/HCV to prevent the disease from progressing to HCC, and tertiary prevention is actively treating HCC to prevent its recurrence.
Collapse
Affiliation(s)
- Xinhe Zhang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haoyu Tian
- The 3rd Clinical Department of China Medical University, Shenyang, China
| | - Zilu Zeng
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayu Chen
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Die Huang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ji Sun
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiaqi Guo
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huipeng Cui
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiling Li
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z, Liu R, Li X, Wu J, Liu Y, Guo S, Jia S, Zhang X, Wang M. Identification of Key Genes Associated With the Process of Hepatitis B Inflammation and Cancer Transformation by Integrated Bioinformatics Analysis. Front Genet 2021; 12:654517. [PMID: 34539726 PMCID: PMC8440810 DOI: 10.3389/fgene.2021.654517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer. Methods Two groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes. Results We identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate. Conclusion The findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Miaomiao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Liu Y, Veeraraghavan V, Pinkerton M, Fu J, Douglas MW, George J, Tu T. Viral Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma Occurrence and Recurrence. Front Microbiol 2021; 12:665201. [PMID: 34194408 PMCID: PMC8236856 DOI: 10.3389/fmicb.2021.665201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the fourth leading cause of cancer-related death. The most common risk factor for developing HCC is chronic infection with hepatitis B virus (HBV). Early stages of HBV-related HCC (HBV-HCC) are generally asymptomatic. Moreover, while serum alpha-fetoprotein (AFP) and abdominal ultrasound are widely used to screen for HCC, they have poor sensitivity. Thus, HBV-HCC is frequently diagnosed at an advanced stage, in which there are limited treatment options and high mortality rates. Serum biomarkers with high sensitivity and specificity are crucial for earlier diagnosis of HCC and improving survival rates. As viral-host interactions are key determinants of pathogenesis, viral biomarkers may add greater diagnostic power for HCC than host biomarkers alone. In this review, we summarize recent research on using virus-derived biomarkers for predicting HCC occurrence and recurrence; including circulating viral DNA, RNA transcripts, and viral proteins. Combining these viral biomarkers with AFP and abdominal ultrasound could improve sensitivity and specificity of early diagnosis, increasing the survival of patients with HBV-HCC. In the future, as the mechanisms that drive HBV-HCC to become clearer, new biomarkers may be identified which can further improve early diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Infectious Diseases, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Vaishnavi Veeraraghavan
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,School of Medical Science, The University of Sydney, Camperdown, NSW, Australia
| | - Monica Pinkerton
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,School of Medical Science, The University of Sydney, Camperdown, NSW, Australia
| | - Jianjun Fu
- Department of Infectious Diseases, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Feng QS. Traditional Chinese medicine treatment of liver cirrhosis: Current status and future prospects. Shijie Huaren Xiaohua Zazhi 2021; 29:159-164. [DOI: 10.11569/wcjd.v29.i4.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese medicine (TCM) has unique advantages in the treatment of liver cirrhosis based on its particular theory and the experience with prevention and treatment. In order to promote the wide application of TCM in liver cirrhosis, it is necessary to strengthen the research of TCM in liver cirrhosis. This paper reviews the present treatment of liver cirrhosis by TCM, and discusses the existing problems and prospects, aiming to provide some scientific clues for the treatment of this refractory disease.
Collapse
Affiliation(s)
- Quan-Sheng Feng
- Chengdu University of TCM, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
8
|
Kong F, Li N, Tu T, Tao Y, Bi Y, Yuan D, Zhang N, Yang X, Kong D, You H, Zheng K, Tang R. Hepatitis B virus core protein promotes the expression of neuraminidase 1 to facilitate hepatocarcinogenesis. J Transl Med 2020; 100:1602-1617. [PMID: 32686743 DOI: 10.1038/s41374-020-0465-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Neuraminidase 1 (NEU1) has been reported to be associated with hepatocellular carcinoma (HCC). However, the function and associated molecular mechanisms of NEU1 in hepatitis B virus (HBV)-related HCC have not been well investigated. In the present study, the expression of NEU1 mediated by HBV and HBV core protein (HBc) was measured in hepatoma cells. The expression of NEU1 protein was detected via immunohistochemical analysis in HBV-associated HCC tissues. The role of NEU1 in the activation of signaling pathways and epithelial-mesenchymal transition (EMT) and the proliferation and migration of hepatoma cells mediated by HBc was assessed. We found that NEU1 was upregulated in HBV-positive hepatoma cells and HBV-related HCC tissues. HBV promoted NEU1 expression at the mRNA and protein level via HBc in hepatoma cells. Mechanistically, HBc was able to enhance the activity of the NEU1 promoter through NF-κB binding sites. In addition, through the increase in NEU1 expression, HBc contributed to activation of downstream signaling pathways and EMT in hepatoma cells. Moreover, NEU1 facilitated the proliferation and migration of hepatoma cells mediated by HBc. Taken together, our findings provide novel insight into the molecular mechanism underlying the oncogenesis mediated by HBc and demonstrate that NEU1 plays a vital role in HBc-mediated functional abnormality in HCC. Thus, NEU1 may serve as a potential therapeutic target in HBV-associated HCC.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Nan Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, P.R. China
| | - Tao Tu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Shuyang Traditional Chinese Medicine Hospital, Shuyang, Jiangsu, P.R. China
| | - Yukai Tao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yanwei Bi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China. .,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Kong F, Tao Y, Yuan D, Zhang N, Li Q, Yu T, Yang X, Kong D, Ding X, Liu X, You H, Zheng K, Tang R. Hepatitis B Virus Core Protein Mediates the Upregulation of C5α Receptor 1 via NF-κB Pathway to Facilitate the Growth and Migration of Hepatoma Cells. Cancer Res Treat 2020; 53:506-527. [PMID: 33197304 PMCID: PMC8053866 DOI: 10.4143/crt.2020.397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose C5α receptor 1 (C5AR1) is associated with the development of various human cancers. However, whether it is involved in the development of hepatitis B virus (HBV)–related hepatocellular carcinoma (HCC) is poorly understood. We explored the expression, biological role, and associated mechanisms of C5AR1 in HBV-related hepatoma cells. Materials and Methods The expression of C5AR1 mediated by HBV and HBV core protein (HBc) was detected in hepatoma cells. The function of nuclear factor κB (NF-κB) pathway in HBc-induced C5AR1 expression was assessed. The roles of C5AR1 in the activation of intracellular signal pathways, the upregulation of inflammatory cytokines, and the growth and migration of hepatoma cells mediated by HBc, were investigated. The effect of C5α in the development of HCC mediated by C5AR1 was also measured. Results C5AR1 expression was increased in HBV-positive hepatoma cells. Dependent on HBc, HBV enhanced the expression of C5AR1 at the mRNA and protein levels. Besides, HBc could promote C5AR1 expression via the NF-κB pathway. Based on the C5AR1, HBc facilitated the activation of JNK and ERK pathways and the expression and secretion of interleukin-6 in hepatoma cells. Furthermore, C5AR1 was responsible for enhancing the growth and migration of hepatoma cells mediated by HBc. Except these, C5α could promote the malignant development of HBc-positive HCC via C5AR1. Conclusion We provide new insight into the mechanisms of hepatocarcinogenesis mediated by HBc. C5AR1 has a significant role in the functional abnormality of hepatoma cells mediated by HBc, and might be utilized as a potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yukai Tao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Clinical Research & Lab Center, The First People's Hospital of Kunshan, Kunshan, China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Tong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaohui Ding
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Han N, Yan L, Wang X, Sun X, Huang F, Tang H. An updated literature review: how HBV X protein regulates the propagation of the HBV. Future Virol 2020. [DOI: 10.2217/fvl-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic HBV infection constitutes a burden on human beings and is closely associated with hepatocellular carcinoma. The propagation of the HBV is determined by many factors, and the HBV X protein (HBx) could have a significant influence on this. HBx is a regulatory protein that can directly or indirectly interact with many cellular proteins to affect both the propagation of the HBV and the activity of the host cells. In this review, we summarized the possible mechanisms by which HBx regulates HBV replication at transcriptional and post-transcriptional levels in various experimental systems.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xueer Wang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
11
|
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 2019; 10:365-381. [PMID: 31832112 PMCID: PMC6882964 DOI: 10.1007/s13167-019-00194-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
A strong relationship exists between tumor and inflammation, which is the hot point in cancer research. Inflammation can promote the occurrence and development of cancer by promoting blood vessel growth, cancer cell proliferation, and tumor invasiveness, negatively regulating immune response, and changing the efficacy of certain anti-tumor drugs. It has been demonstrated that there are a large number of inflammatory factors and inflammatory cells in the tumor microenvironment, and tumor-promoting immunity and anti-tumor immunity exist simultaneously in the tumor microenvironment. The typical relationship between chronic inflammation and tumor has been presented by the relationships between Helicobacter pylori, chronic gastritis, and gastric cancer; between smoking, development of chronic pneumonia, and lung cancer; and between hepatitis virus (mainly hepatitis virus B and C), development of chronic hepatitis, and liver cancer. The prevention of chronic inflammation is a factor that can prevent cancer, so it effectively inhibits or blocks the occurrence, development, and progression of the chronic inflammation process playing important roles in the prevention of cancer. Monitoring of the causes and inflammatory factors in chronic inflammation processes is a useful way to predict cancer and assess the efficiency of cancer prevention. Chronic inflammation-based biomarkers are useful tools to predict and prevent cancer.
Collapse
Affiliation(s)
- Shehua Qian
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Olga Golubnitschaja
- 4Radiological Clinic, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
- 5Breast Cancer Research Centre, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- 6Centre for Integrated Oncology, Cologne-Bonn, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Xianquan Zhan
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 7Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
- 8National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
12
|
Westin J, Aleman S, Castedal M, Duberg AS, Eilard A, Fischler B, Kampmann C, Lindahl K, Lindh M, Norkrans G, Stenmark S, Weiland O, Wejstål R. Management of hepatitis B virus infection, updated Swedish guidelines. Infect Dis (Lond) 2019; 52:1-22. [DOI: 10.1080/23744235.2019.1675903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johan Westin
- Deparment of Infectious Diseases, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Soo Aleman
- Deparment of Medicine, Division of Infectious Diseases, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Castedal
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Sofi Duberg
- Deparment of Infectious Diseases, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Eilard
- Deparment of Infectious Diseases, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Fischler
- Deparment of Pediatrics, CLINTEC, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christian Kampmann
- Deparment of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| | - Karin Lindahl
- Deparment of Medicine, Division of Infectious Diseases, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Lindh
- Deparment of Infectious Diseases, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Norkrans
- Deparment of Infectious Diseases, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephan Stenmark
- Deparment of Clinical Microbiology and Infectious Diseases, Umeå University, Umeå, Sweden
| | - Ola Weiland
- Deparment of Medicine, Division of Infectious Diseases, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Rune Wejstål
- Deparment of Infectious Diseases, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Kou Y, Yan X, Liu Q, Wei X, Zhang B, Li X, Pan W, Kong F, Wang Y, Zheng K, Tang R. HBV upregulates AP-1 complex subunit mu-1 expression via the JNK pathway to promote proliferation of liver cancer cells. Oncol Lett 2019; 18:456-464. [PMID: 31289517 PMCID: PMC6540315 DOI: 10.3892/ol.2019.10291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Although hepatitis B virus (HBV) infection is responsible for liver cancer, the exact mechanism of its action remains unclear. μ1 adaptin is an intrinsic part of the clathrin adaptor AP-1 complex. In addition to its canonical biological function that involves cargo sorting and vesicular transport, recent studies have demonstrated that μ1 adaptin participates in cell growth and proliferation. The aim of the present study was to investigate the effects of the clathrin adaptor AP-1 complex subunit mu-1 (AP1M1) on liver cancer cell proliferation. The present study reports for the first time that AP1M1 is upregulated in the HBV-transfected HepG2.215 liver cancer cells. Silencing of AP1M1 in HepG2.215 cells suppressed their proliferation, while the overexpression of AP1M1 in HepG2 cells promoted cell proliferation. The data suggested that AP1M1 is one of the crucial factors involved in the progression of liver cancer caused by HBV infection. In addition, it was demonstrated that HBV facilitated AP1M1 expression in a JNK-dependent manner. The increased expression levels of AP1M1 enhanced phosphorylation of protein kinase B and accelerated cell proliferation. Unraveling the effects of AP1M1 on liver cancer cell proliferation and the mechanism of AP1M1 transcriptional regulation may provide new therapeutic targets for HBV-positive liver cancer.
Collapse
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiaoqing Yan
- Institute of Emergency and Rescue Medicine, Laboratory of Emergency Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qingya Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiao Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
14
|
Zhang L, Luo B, Dang YW, He RQ, Chen G, Peng ZG, Feng ZB. The clinical significance of endothelin receptor type B in hepatocellular carcinoma and its potential molecular mechanism. Exp Mol Pathol 2019; 107:141-157. [DOI: 10.1016/j.yexmp.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 02/07/2023]
|
15
|
Kaplan D. Causal Inference for Observational Studies. J Infect Dis 2019; 219:1-2. [PMID: 29982667 DOI: 10.1093/infdis/jiy392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Kaplan
- Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
Liu XF, Thin KZ, Ming XL, Shuo-Li, Ping-Luo, Man-Zhu, Li ND, Tu JC. Small Nucleolar RNA Host Gene 18 Acts as a Tumor Suppressor and a Diagnostic Indicator in Hepatocellular Carcinoma. Technol Cancer Res Treat 2018; 17:1533033818794494. [PMID: 30126319 PMCID: PMC6104208 DOI: 10.1177/1533033818794494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Noncoding RNAs are crucial regulators acting as either tumor suppressor genes or oncogenes in human cancer progression. The aberrant expression of noncoding RNAs has been confirmed in different kinds of cancers. Hepatocellular carcinoma is one of the most common malignant tumors worldwide, characterized by insidious onset, great malignancy, and high rates of recurrence and metastasis. Due to lack of early predictive markers, numerous patients are diagnosed in the late stages. As therapeutic options for advanced patients are quite limited, great efforts have been made to screen patients at early stages. A previous study reported that small nucleolar RNA host gene 18 played crucial role in glioma. However, its functions and roles in hepatocellular carcinoma are unknown. PURPOSE To explore its functional role and diagnostic value in hepatocellular carcinoma, we investigated its expression level. METHODS We performed real-time quantitative polymerase chain reaction in tumor tissues and adjacent noncancerous tissues derived from patients with hepatocellular carcinoma as well as in plasma, including samples from the healthy control, patients with hepatitis B, cirrhosis, and hepatocellular carcinoma. RESULTS Small nucleolar RNA host gene 18 was downregulated in liver tissues compared to paired adjacent noncancerous tissues ( P < .0001). Meanwhile, plasma small nucleolar RNA host gene 18 showed a relatively high sensitivity and specificity (75.61% and 73.49%) for distinguishing patients with hepatocellular carcinoma whose α-fetoprotein levels were below 200 ng/mL from the healthy controls. CONCLUSION Our study suggested that small nucleolar RNA host gene 18 might act as a tumor suppressor gene in hepatocellular carcinoma and potentially a diagnostic indicator to distinguish hepatocellular carcinoma from the healthy control and cirrhosis.
Collapse
Affiliation(s)
- Xue-Fang Liu
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Khaing Zar Thin
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin-Liang Ming
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo-Li
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping-Luo
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Man-Zhu
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan-Di Li
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Cheng Tu
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Liu D, Liu M, Wang W, Pang L, Wang Z, Yuan C, Liu K. Overexpression of apoptosis-inducing factor mitochondrion-associated 1 (AIFM1) induces apoptosis by promoting the transcription of caspase3 and DRAM in hepatoma cells. Biochem Biophys Res Commun 2018; 498:453-457. [PMID: 29501488 DOI: 10.1016/j.bbrc.2018.02.203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Full-length apoptosis-inducing factor mitochondrion-associated 1 (AIFM1) (∼67 kDa) induces apoptosis in a caspase-independent manner when it is cleaved at its N-terminus to produce truncated AIFM1 (∼57 kDa). Here, we produced recombinant adenovirus AIFM1 (rAd-AIFM1) encoding full-length AIFM1 to detect whether full-length AIFM1 suppresses cell growth and induces apoptosis of hepatoma cell lines (HepG2 and Hep3B). Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat worldwide. The MTT assay demonstrated that full-length AIFM1 inhibited the growth of hepatoma cells because rAd-AIFM1 infection suppressed the proliferation of HepG2 and Hep3B cells. TUNEL assay demonstrated that full-length AIFM1 overexpression induced apoptosis in HepG2 and Hep3B cells infected with rAd-AIFM1, suggesting an apoptosis-inducing ability of full-length AIFM1. Our data further showed that the expression of two pro-apoptotic genes, caspase3 and DRAM, were involved in full-length AIFM1 infection-induced apoptosis, and full-length AIFM1 could also positively regulate the transcription of caspase3 and DRAM. Thus, overexpression of full-length AIFM1 can induce caspase-dependent apoptosis and suppresses cell growth of hepatoma cells. Our data uncover a potential role of rAd-AIFM1 in HCC gene therapy.
Collapse
Affiliation(s)
- Dongjie Liu
- Beijing Institute of Hepatology, Beijing, 100069, China; Capital Medical University Affiliated Beijing You an Hospital, Beijing, 100069, China; Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, 100069, China; Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Mingyang Liu
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing, 100069, China; Capital Medical University Affiliated Beijing You an Hospital, Beijing, 100069, China; Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, 100069, China
| | - Lijun Pang
- Beijing Institute of Hepatology, Beijing, 100069, China; Capital Medical University Affiliated Beijing You an Hospital, Beijing, 100069, China; Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, 100069, China
| | - Zhenchang Wang
- Beijing Friendship Hospital, Capital Medical University, 100050, China
| | - Chunwang Yuan
- Capital Medical University Affiliated Beijing You an Hospital, Beijing, 100069, China.
| | - Kai Liu
- Beijing Institute of Hepatology, Beijing, 100069, China; Capital Medical University Affiliated Beijing You an Hospital, Beijing, 100069, China; Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, 100069, China.
| |
Collapse
|
18
|
The Roles of Matricellular Proteins in Oncogenic Virus-Induced Cancers and Their Potential Utilities as Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18102198. [PMID: 29065446 PMCID: PMC5666879 DOI: 10.3390/ijms18102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins differ from other classical extracellular matrix proteins; for instance, they are transiently expressed as soluble proteins rather than being constitutively expressed in pathological conditions, such as acute viral infections. Accumulating studies have revealed that matricellular proteins, including osteopontin and tenascin-C, both of which interact with integrin heterodimers, are involved in inflammatory diseases, autoimmune disorders, and cancers. The concentrations of these matricellular proteins are elevated in the plasma of patients with certain types of cancers, indicating that they play important roles in oncogenesis. Chronic viral infections are associated with certain cancers, which are distinct from non-viral cancers. Viral oncogenes play critical roles in the development and progression of such cancers. It is vital to investigate the mechanisms of tumorigenesis and, particularly, the mechanism by which viral proteins induce tumor progression. Viral proteins have been shown to influence not only the viral-infected cancer cells, but also the stromal cells and matricellular proteins that constitute the extracellular matrix that surrounds tumor tissues. In this review, we summarize the recent progress on the involvement of matricellular proteins in oncogenic virus-induced cancers to elucidate the mechanism of oncogenesis and consider the possible role of matricellular proteins as therapeutic targets in virus-induced cancers.
Collapse
|