1
|
Sorge A, Elli L, Rondonotti E, Pennazio M, Spada C, Cadoni S, Cannizzaro R, Calabrese C, de Franchis R, Girelli CM, Marmo R, Riccioni ME, Marmo C, Oliva S, Scarpulla G, Soncini M, Vecchi M, Tontini GE. Enteroscopy in diagnosis and treatment of small bowel bleeding: A Delphi expert consensus. Dig Liver Dis 2023; 55:29-39. [PMID: 36100515 DOI: 10.1016/j.dld.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Enteroscopy plays an important role in the management of small bowel bleeding. However, current guidelines are not specifically designed for small bowel bleeding and recommendations from different international societies do not always align. Consequently, there is heterogeneity in the definitions of clinical entities, clinical practice policies, and adherence to guidelines among clinicians. This represents an obstacle to providing the best patient care and to obtain homogeneous data for clinical research. AIMS The aims of the study were to establish a consensus on the definitions of bleeding entities and on the role of enteroscopy in the management of small bowel bleeding using a Delphi process. METHODS A core group of eight experts in enteroscopy identified five main topics of small bowel bleeding management and drafted statements on each topic. An expert panel of nine gastroenterologists participated in three rounds of the Delphi process, together with the core group. RESULTS A total of 33 statements were approved after three rounds of Delphi voting. CONCLUSION This Delphi consensus proposes clear definitions and a unifying strategy to standardize the management of small bowel bleeding. Furthermore, it provides a useful guide in daily practice for both clinical and technical issues of enteroscopy.
Collapse
Affiliation(s)
- Andrea Sorge
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Luca Elli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marco Pennazio
- University Division of Gastroenterology, City of Health and Science University Hospital, Turin, Italy
| | - Cristiano Spada
- Digestive Endoscopy Unit, Catholic University of Rome, Rome, Italy; Digestive Endoscopy Unit, Fondazione Poliambulanza, Brescia, Italy
| | - Sergio Cadoni
- Digestive Endoscopy Unit, Centro Traumatologico Ortopedico, Iglesias, Italy
| | - Renato Cannizzaro
- Experimental Oncological Gastroenterology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto Nazionale Tumori IRCCS, Aviano, Italy
| | - Carlo Calabrese
- University of Bologna Alma Mater - School of Medicine, Department of Medical and Surgical Sciences - Regional Referral Center for IBD, Bologna, Italy
| | | | | | | | - Maria Elena Riccioni
- Digestive Endoscopy Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Clelia Marmo
- Digestive Endoscopy Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Salvatore Oliva
- Gastroenterology and Paeditric Hepatology Unit, Università La Sapienza, Rome, Italy
| | | | - Marco Soncini
- Department of Internal Medicine, "A. Manzoni" Hospital, ASST Lecco, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gian Eugenio Tontini
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
2
|
Chang Y, Wang Z, Sun HB, Li YQ, Tang TY. Artificial Intelligence in Inflammatory Bowel Disease Endoscopy: Advanced Development and New Horizons. Gastroenterol Res Pract 2023; 2023:3228832. [PMID: 37101782 PMCID: PMC10125749 DOI: 10.1155/2023/3228832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 04/28/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex chronic immune disease with two subtypes: Crohn's disease and ulcerative colitis. Considering the differences in pathogenesis, etiology, clinical presentation, and response to therapy among patients, gastroenterologists mainly rely on endoscopy to diagnose and treat IBD during clinical practice. However, as exemplified by the increasingly comprehensive ulcerative colitis endoscopic scoring system, the endoscopic diagnosis, evaluation, and treatment of IBD still rely on the subjective manipulation and judgment of endoscopists. In recent years, the use of artificial intelligence (AI) has grown substantially in various medical fields, and an increasing number of studies have investigated the use of this emerging technology in the field of gastroenterology. Clinical applications of AI have focused on IBD pathogenesis, etiology, diagnosis, and patient prognosis. Large-scale datasets offer tremendous utility in the development of novel tools to address the unmet clinical and practice needs for treating patients with IBD. However, significant differences among AI methodologies, datasets, and clinical findings limit the incorporation of AI technology into clinical practice. In this review, we discuss practical AI applications in the diagnosis of IBD via gastroenteroscopy and speculate regarding a future in which AI technology provides value for the diagnosis and treatment of IBD patients.
Collapse
Affiliation(s)
- Yu Chang
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, 130000 Jilin, China
| | - Zhi Wang
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, 130000 Jilin, China
| | - Hai-Bo Sun
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, 130000 Jilin, China
| | - Yu-Qin Li
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, 130000 Jilin, China
| | - Tong-Yu Tang
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, 130000 Jilin, China
| |
Collapse
|
3
|
Development and Validation of Deep Learning Models for the Multiclassification of Reflux Esophagitis Based on the Los Angeles Classification. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:7023731. [PMID: 36852218 PMCID: PMC9966565 DOI: 10.1155/2023/7023731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
This study is to evaluate the feasibility of deep learning (DL) models in the multiclassification of reflux esophagitis (RE) endoscopic images, according to the Los Angeles (LA) classification for the first time. The images were divided into three groups, namely, normal, LA classification A + B, and LA C + D. The images from the HyperKvasir dataset and Suzhou hospital were divided into the training and validation datasets as a ratio of 4 : 1, while the images from Jintan hospital were the independent test set. The CNNs- or Transformer-architectures models (MobileNet, ResNet, Xception, EfficientNet, ViT, and ConvMixer) were transfer learning via Keras. The visualization of the models was proposed using Gradient-weighted Class Activation Mapping (Grad-CAM). Both in the validation set and the test set, the EfficientNet model showed the best performance as follows: accuracy (0.962 and 0.957), recall for LA A + B (0.970 and 0.925) and LA C + D (0.922 and 0.930), Marco-recall (0.946 and 0.928), Matthew's correlation coefficient (0.936 and 0.884), and Cohen's kappa (0.910 and 0.850), which was better than the other models and the endoscopists. According to the EfficientNet model, the Grad-CAM was plotted and highlighted the target lesions on the original images. This study developed a series of DL-based computer vision models with the interpretable Grad-CAM to evaluate the feasibility in the multiclassification of RE endoscopic images. It firstly suggests that DL-based classifiers show promise in the endoscopic diagnosis of esophagitis.
Collapse
|
4
|
Riemann JF, Teufel A. Digital Communication Strategies in Visceral Medicine. Visc Med 2021; 37:455-457. [PMID: 35087895 PMCID: PMC8740225 DOI: 10.1159/000518878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jürgen F. Riemann
- Department of Medicine C, LebensBlicke Foundation, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Andreas Teufel
- Department of Medicine II, Division of Hepatology, Division of Bioinformatics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Tontini GE, Rimondi A, Vernero M, Neumann H, Vecchi M, Bezzio C, Cavallaro F. Artificial intelligence in gastrointestinal endoscopy for inflammatory bowel disease: a systematic review and new horizons. Therap Adv Gastroenterol 2021; 14:17562848211017730. [PMID: 34178115 PMCID: PMC8202249 DOI: 10.1177/17562848211017730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Since the advent of artificial intelligence (AI) in clinical studies, luminal gastrointestinal endoscopy has made great progress, especially in the detection and characterization of neoplastic and preneoplastic lesions. Several studies have recently shown the potential of AI-driven endoscopy for the investigation of inflammatory bowel disease (IBD). This systematic review provides an overview of the current position and future potential of AI in IBD endoscopy. METHODS A systematic search was carried out in PubMed and Scopus up to 2 December 2020 using the following search terms: artificial intelligence, machine learning, computer-aided, inflammatory bowel disease, ulcerative colitis (UC), Crohn's disease (CD). All studies on human digestive endoscopy were included. A qualitative analysis and a narrative description were performed for each selected record according to the Joanna Briggs Institute methodologies and the PRISMA statement. RESULTS Of 398 identified records, 18 were ultimately included. Two-thirds of these (12/18) were published in 2020 and most were cross-sectional studies (15/18). No relevant bias at the study level was reported, although the risk of publication bias across studies cannot be ruled out at this early stage. Eleven records dealt with UC, five with CD and two with both. Most of the AI systems involved convolutional neural network, random forest and deep neural network architecture. Most studies focused on capsule endoscopy readings in CD (n = 5) and on the AI-assisted assessment of mucosal activity in UC (n = 10) for automated endoscopic scoring or real-time prediction of histological disease. DISCUSSION AI-assisted endoscopy in IBD is a rapidly evolving research field with promising technical results and additional benefits when tested in an experimental clinical scenario. External validation studies being conducted in large and prospective cohorts in real-life clinical scenarios will help confirm the added value of AI in assessing UC mucosal activity and in CD capsule reading. PLAIN LANGUAGE SUMMARY Artificial intelligence for inflammatory bowel disease endoscopy Artificial intelligence (AI) is a promising technology in many areas of medicine. In recent years, AI-assisted endoscopy has been introduced into several research fields, including inflammatory bowel disease (IBD) endoscopy, with promising applications that have the potential to revolutionize clinical practice and gastrointestinal endoscopy.We have performed the first systematic review of AI and its application in the field of IBD and endoscopy.A formal process of paper selection and analysis resulted in the assessment of 18 records. Most of these (12/18) were published in 2020 and were cross-sectional studies (15/18). No relevant biases were reported. All studies showed positive results concerning the novel technology evaluated, so the risk of publication bias cannot be ruled out at this early stage.Eleven records dealt with UC, five with CD and two with both. Most studies focused on capsule endoscopy reading in CD patients (n = 5) and on AI-assisted assessment of mucosal activity in UC patients (n = 10) for automated endoscopic scoring and real-time prediction of histological disease.We found that AI-assisted endoscopy in IBD is a rapidly growing research field. All studies indicated promising technical results. When tested in an experimental clinical scenario, AI-assisted endoscopy showed it could potentially improve the management of patients with IBD.Confirmatory evidence from real-life clinical scenarios should be obtained to verify the added value of AI-assisted IBD endoscopy in assessing UC mucosal activity and in CD capsule reading.
Collapse
Affiliation(s)
- Gian Eugenio Tontini
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandro Rimondi
- Department of Pathophysiology and Organ Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Vernero
- Gastroenterology Unit, Rho Hospital, ASST Rhodense, Milan, Italy
| | - Helmut Neumann
- Department of Interdisciplinary Endoscopy, University Hospital Mainz, Mainz, Germany
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina Bezzio
- Gastroenterology Unit, Rho Hospital, ASST Rhodense, Milan, Italy
| | - Flaminia Cavallaro
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|