1
|
Heyes DJ, Zhang S, Taylor A, Johannissen LO, Hardman SJO, Hay S, Scrutton NS. Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. NATURE PLANTS 2021; 7:268-276. [PMID: 33686224 DOI: 10.1038/s41477-021-00866-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic photocatalysis is seldom used in biology. Photocatalysis by light-dependent protochlorophyllide oxidoreductase (LPOR)-one of only a few natural light-dependent enzymes-is an exception, and is responsible for the conversion of protochlorophyllide to chlorophyllide in chlorophyll biosynthesis. Photocatalysis by LPOR not only regulates the biosynthesis of the most abundant pigment on Earth but it is also a 'master switch' in photomorphogenesis in early plant development. Following illumination, LPOR promotes chlorophyll production, plastid membranes are transformed and the photosynthetic apparatus is established. Given these remarkable, light-induced pigment and morphological changes, the LPOR-catalysed reaction has been extensively studied from catalytic, physiological and plant development perspectives, highlighting vital, and multiple, cellular roles of this intriguing enzyme. Here, we offer a perspective in which the link between LPOR photocatalysis and plant photomorphogenesis is explored. Notable breakthroughs in LPOR structural biology have uncovered the structural-mechanistic basis of photocatalysis. These studies have clarified how photon absorption by the pigment protochlorophyllide-bound in a ternary LPOR-protochlorophyllide-NADPH complex-triggers photocatalysis and a cascade of complex molecular and cellular events that lead to plant morphological changes. Photocatalysis is therefore the master switch responsible for early-stage plant development and ultimately life on Earth.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Aoife Taylor
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Singh P, Mukherjee D, Singha S, Das R, Pal SK. Modulation of Kinetic Pathways of Enzyme–Substrate Interaction in a Microfluidic Channel: Nanoscopic Water Dynamics as a Switch. Chemistry 2019; 25:9728-9736. [DOI: 10.1002/chem.201901751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Priya Singh
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| | - Subhankar Singha
- Department of ChemistryPohang University of Science and Technology (POSTECH) 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 790784 Republic of Korea
| | - Ranjan Das
- Department of ChemistryWest Bengal State University, Barasat Kolkata 700126
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| |
Collapse
|
3
|
Romero E, Ladani ST, Hamelberg D, Gadda G. Solvent-Slaved Motions in the Hydride Tunneling Reaction Catalyzed by Human Glycolate Oxidase. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elvira Romero
- Department of Chemistry, ¶Department of Biology, ∥Center for Biotechnology
and Drug
Design, and #Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Safieh Tork Ladani
- Department of Chemistry, ¶Department of Biology, ∥Center for Biotechnology
and Drug
Design, and #Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, ¶Department of Biology, ∥Center for Biotechnology
and Drug
Design, and #Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Giovanni Gadda
- Department of Chemistry, ¶Department of Biology, ∥Center for Biotechnology
and Drug
Design, and #Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
4
|
Hoeven R, Hardman SJO, Heyes DJ, Scrutton NS. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry 2016; 55:903-13. [DOI: 10.1021/acs.biochem.5b01355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Hoeven
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J. O. Hardman
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J. Heyes
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
5
|
Heyes DJ, Hardman SJO, Hedison TM, Hoeven R, Greetham GM, Towrie M, Scrutton NS. Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Angew Chem Int Ed Engl 2015; 54:1512-5. [PMID: 25488797 PMCID: PMC4531822 DOI: 10.1002/anie.201409881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/11/2022]
Abstract
The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond-microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called "reactive" intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| | - Tobias M Hedison
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| | - Robin Hoeven
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| | - Greg M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities CouncilHarwell Oxford, Didcot, OX11 0QX (UK)
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities CouncilHarwell Oxford, Didcot, OX11 0QX (UK)
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| |
Collapse
|
6
|
von Stetten D, Giraud T, Carpentier P, Sever F, Terrien M, Dobias F, Juers DH, Flot D, Mueller-Dieckmann C, Leonard GA, de Sanctis D, Royant A. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:15-26. [PMID: 25615856 PMCID: PMC4304682 DOI: 10.1107/s139900471401517x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/27/2014] [Indexed: 01/04/2023]
Abstract
The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for `spectroscopy'). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.
Collapse
Affiliation(s)
| | - Thierry Giraud
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | | | - Franc Sever
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Maxime Terrien
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Fabien Dobias
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Douglas H. Juers
- Department of Physics, Whitman College, Walla Walla, WA 99362, USA
| | - David Flot
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | | | | | | | - Antoine Royant
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
7
|
Heyes DJ, Hardman SJO, Hedison TM, Hoeven R, Greetham GM, Towrie M, Scrutton NS. Excited-State Charge Separation in the Photochemical Mechanism of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Kohse S, Neubauer A, Lochbrunner S, Kragl U. Improving the Time Resolution for Remote Control of Enzyme Activity by a Nanosecond Laser-Induced pH Jump. ChemCatChem 2014. [DOI: 10.1002/cctc.201402442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Hauck AFE, Hardman SJO, Kutta RJ, Greetham GM, Heyes DJ, Scrutton NS. The photoinitiated reaction pathway of full-length cyanobacteriochrome Tlr0924 monitored over 12 orders of magnitude. J Biol Chem 2014; 289:17747-57. [PMID: 24817121 PMCID: PMC4067208 DOI: 10.1074/jbc.m114.566133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The coupling of photochemistry to protein chemical and structural change is crucial to biological light-activated signaling mechanisms. This is typified by cyanobacteriochromes (CBCRs), members of the phytochrome superfamily of photoreceptors that exhibit a high degree of spectral diversity, collectively spanning the entire visible spectrum. CBCRs utilize a basic E/Z isomerization of the bilin chromophore as the primary step in their photocycle, which consists of reversible photoconversion between two photostates. Despite intense interest in these photoreceptors as signal transduction modules a complete description of light-activated chemical and structural changes has not been reported. The CBCR Tlr0924 contains both phycocyanobilin and phycoviolobilin chromophores, and these two species photoisomerize in parallel via spectrally and kinetically equivalent intermediates before the second step of the photoreaction where the reaction pathways diverge, the loss of a thioether linkage to a conserved cysteine residue occurs, and the phycocyanobilin reaction terminates in a red-absorbing state, whereas the phycoviolobilin reaction proceeds more rapidly to a final green-absorbing state. Here time-resolved visible transient absorption spectroscopy (femtosecond to second) has been used, in conjunction with time-resolved IR spectroscopy (femtosecond to nanosecond) and cryotrapping techniques, to follow the entire photoconversion of the blue-absorbing states to the green- and red-absorbing states of the full-length form of Tlr0924 CBCR. Our analysis shows that Tlr0924 undergoes an unprecedented long photoreaction that spans from picoseconds to seconds. We show that the thermally driven, long timescale changes are less complex than those reported for the red/far-red photocycles of the related phytochrome photoreceptors.
Collapse
Affiliation(s)
- Anna F E Hauck
- From the Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom and
| | - Samantha J O Hardman
- From the Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom and
| | - Roger J Kutta
- From the Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom and
| | - Gregory M Greetham
- the Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Derren J Heyes
- From the Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom and
| | - Nigel S Scrutton
- From the Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom and
| |
Collapse
|
10
|
Gregory MJ, Anderson M, Causgrove TP. Measurement of energy barriers to conformational change in poly-l-glutamic acid by temperature-derivative spectroscopy. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Kohse S, Neubauer A, Pazidis A, Lochbrunner S, Kragl U. Photoswitching of Enzyme Activity by Laser-Induced pH-Jump. J Am Chem Soc 2013; 135:9407-11. [DOI: 10.1021/ja400700x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefanie Kohse
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Antje Neubauer
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Alexandra Pazidis
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Udo Kragl
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| |
Collapse
|
12
|
Heyes DJ, Khara B, Sakuma M, Hardman SJO, O'Cualain R, Rigby SEJ, Scrutton NS. Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state. PLoS One 2012; 7:e52418. [PMID: 23300666 PMCID: PMC3530517 DOI: 10.1371/journal.pone.0052418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/15/2012] [Indexed: 11/29/2022] Open
Abstract
Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel ‘head-to-head’ arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
13
|
Heyes DJ, Hardman SJO, Mansell D, Gardiner JM, Scrutton NS. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase. PLoS One 2012; 7:e45642. [PMID: 23049830 PMCID: PMC3458894 DOI: 10.1371/journal.pone.0045642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
The light-driven enzyme protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide) and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.
Collapse
Affiliation(s)
- Derren J. Heyes
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
- * E-mail: (NSS); (DJH)
| | - Samantha J. O. Hardman
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - David Mansell
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - John M. Gardiner
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
- * E-mail: (NSS); (DJH)
| |
Collapse
|
14
|
Scrutton NS, Louise Groot M, Heyes DJ. Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2012; 14:8818-24. [DOI: 10.1039/c2cp23789j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sytina OA, van Stokkum IHM, Heyes DJ, Hunter CN, Groot ML. Spectroscopic characterization of the first ultrafast catalytic intermediate in protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2012; 14:616-25. [DOI: 10.1039/c1cp21713e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Grossman M, Sela-Passwell N, Sagi I. Achieving broad molecular insights into dynamic protein interactions by integrated structural-kinetic approaches. Curr Opin Struct Biol 2011; 21:678-85. [PMID: 21945040 DOI: 10.1016/j.sbi.2011.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/21/2011] [Accepted: 07/31/2011] [Indexed: 11/30/2022]
Abstract
A network of dynamic protein interactions with their protein partners, substrates, and ligands is known to be crucial for biological function. Revealing molecular and structural-based mechanisms at atomic resolution and in real-time is fundamental for achieving a basic understanding of cellular processes. These technically challenging goals may be achieved by combining time-resolved spectroscopic and structural-kinetic tools, thus providing broad insights into specific molecular events over a wide range of timescales. Here we review representative studies utilizing such an integrated real-time structural approach designed to reveal molecular mechanisms underlying protein interactions at atomic resolution.
Collapse
Affiliation(s)
- Moran Grossman
- Departments of Structural Biology and Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
17
|
Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I, Havenith M. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 2011; 18:1102-8. [PMID: 21926991 DOI: 10.1038/nsmb.2120] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 07/07/2011] [Indexed: 01/16/2023]
Abstract
Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme-inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.
Collapse
Affiliation(s)
- Moran Grossman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Heyes DJ, Levy C, Sakuma M, Robertson DL, Scrutton NS. A twin-track approach has optimized proton and hydride transfer by dynamically coupled tunneling during the evolution of protochlorophyllide oxidoreductase. J Biol Chem 2011; 286:11849-54. [PMID: 21317291 DOI: 10.1074/jbc.m111.219626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein dynamics are crucial for realizing the catalytic power of enzymes, but how enzymes have evolved to achieve catalysis is unknown. The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes sequential hydride and proton transfers in the photoexcited and ground states, respectively, and is an excellent system for relating the effects of motions to catalysis. Here, we have used the temperature dependence of isotope effects and solvent viscosity measurements to analyze the dynamics coupled to the hydride and proton transfer steps in three cyanobacterial PORs and a related plant enzyme. We have related the dynamic profiles of each enzyme to their evolutionary origin. Motions coupled to light-driven hydride transfer are conserved across all POR enzymes, but those linked to thermally activated proton transfer are variable. Cyanobacterial PORs require complex and solvent-coupled dynamic networks to optimize the proton donor-acceptor distance, but evolutionary pressures appear to have minimized such networks in plant PORs. POR from Gloeobacter violaceus has features of both the cyanobacterial and plant enzymes, suggesting that the dynamic properties have been optimized during the evolution of POR. We infer that the differing trajectories in optimizing a catalytic structure are related to the stringency of the chemistry catalyzed and define a functional adaptation in which active site chemistry is protected from the dynamic effects of distal mutations that might otherwise impact negatively on enzyme catalysis.
Collapse
Affiliation(s)
- Derren J Heyes
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
Willenbring D, Xu Y, Tang P. The role of structured water in mediating general anesthetic action on alpha4beta2 nAChR. Phys Chem Chem Phys 2010; 12:10263-9. [PMID: 20661501 PMCID: PMC3265171 DOI: 10.1039/c003573d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Water is an essential component for many biological processes. Pauling proposed that water might play a critical role in general anesthesia by forming water clathrates around anesthetic molecules. To examine potential involvement of water in general anesthesia, we analyzed water within alpha4beta2 nAChR, a putative protein target hypersensitive to volatile anesthetics. Experimental structure-derived closed- and open-channel nAChR systems in a fully hydrated lipid bilayer were examined using all-atom molecular dynamics simulations. At the majority of binding sites in alpha4beta2 nAChR, halothane replaced the slow-exchanging water molecules and caused a regional water population decrease. Only two binding sites had an increased quantity of water in the presence of halothane, where water arrangements resemble clathrate-like structures. The small number of such clathrate-like water clusters suggests that the formation of water clathrates is unlikely to be a primary cause for anesthesia. Despite the decrease in water population at most of the halothane binding sites, the number of sites that can be occupied transiently by water is actually increased in the presence of halothane. Many of these water sites were located between two subunits or in regions containing agonist binding sites or critical structural elements for transducing agonist binding to channel gating. Changes in water sites in the presence of halothane affected water-mediated protein-protein interactions and the protein dynamics, which can have direct impact on protein function. Collectively, water contributes to the action of anesthetics in proteins by mediating interactions between protein subunits and altering protein dynamics, instead of forming water clathrates around anesthetics.
Collapse
Affiliation(s)
- Dan Willenbring
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
20
|
Weik M, Colletier JP. Temperature-dependent macromolecular X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:437-46. [PMID: 20382997 PMCID: PMC2852308 DOI: 10.1107/s0907444910002702] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.
Collapse
Affiliation(s)
- Martin Weik
- CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble, France.
| | | |
Collapse
|
21
|
Faro AR, Adam V, Carpentier P, Darnault C, Bourgeois D, de Rosny E. Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem Photobiol Sci 2010; 9:254-62. [PMID: 20126803 DOI: 10.1039/b9pp00121b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied the photoswitching behaviour of a number of photochromic fluorescent proteins at cryo-temperature. Spectroscopic investigations at the ensemble level showed that EYFP, Dronpa and IrisFP all exhibit reversible photoswitching at 100 K, albeit with a low quantum yield. The photophysics of the process were studied in more details in the case of EYFP. The data suggest that photoinduced protonation of the chromophore is responsible for off-switching at cryo-temperature, and thus is possible in the absence of significant conformational freedom. This finding is consistent with the hypothesis that chromophore protonation may precede large amplitude conformational changes such as cis-trans isomerisation during off-photoswitching at room temperature. However, our data suggest that low-barrier photoinduced protonation pathways may in fact compete with room-temperature off-switching reactions in photochromic fluorescent proteins. The occurrence of reversible photoswitching at low-temperature is of interest to envisage cryo-nanoscopy experiments using genetically encoded fluorophores.
Collapse
Affiliation(s)
- Aline Regis Faro
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027, Grenoble, France
| | | | | | | | | | | |
Collapse
|
22
|
Menon BRK, Davison PA, Hunter CN, Scrutton NS, Heyes DJ. Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 2009; 285:2113-9. [PMID: 19850924 DOI: 10.1074/jbc.m109.071522] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes an essential step in the synthesis of the most abundant pigment on Earth, chlorophyll. This unique reaction involves the sequential addition of a hydride and proton across the C17=C18 double bond of protochlorophyllide (Pchlide) by dynamically coupled quantum tunneling and is an important model system for studying the mechanism of hydrogen transfer reactions. In the present work, we have combined site-directed mutagenesis studies with a variety of sensitive spectroscopic and kinetic measurements to provide new insights into the mechanistic role of three universally conserved Cys residues in POR. We show that mutation of Cys-226 dramatically alters the catalytic mechanism of the enzyme. In contrast to wild-type POR, the characteristic charge-transfer intermediate, formed upon hydride transfer from NADPH to the C17 position of Pchlide, is absent in C226S variant enzymes. This suggests a concerted hydrogen transfer mechanism where proton transfer only is rate-limiting. Moreover, Pchlide reduction does not require the network of solvent-coupled conformational changes that play a key role in the proton transfer step of wild-type POR. We conclude that this globally important enzyme is finely tuned to facilitate efficient photochemistry, and the removal of a key interaction with Pchlide in the C226S variants significantly affects the local active site structure in POR, resulting in a shorter donor-acceptor distance for proton transfer.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester M17DN
| | | | | | | | | |
Collapse
|