1
|
Stangel C, Kagkoura A, Pippa N, Stellas D, Zhang M, Okazaki T, Demetzos C, Tagmatarchis N. Preclinical evaluation of modified carbon nanohorns and their complexation with insulin. NANOSCALE ADVANCES 2023; 5:6847-6857. [PMID: 38059018 PMCID: PMC10696926 DOI: 10.1039/d3na00471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023]
Abstract
The current study emphasizes the minimal toxicity observed in vitro and in vivo for carbon nanohorns (CNHs) modified with third generation polyamidoamine (PAMAM) dendrimers. Initially, we investigated the interactions between CNH-PAMAM and lipid bilayers, which were utilized as representative models of cellular membranes for the evaluation of their toxicity in vitro. We found that the majority of those interactions occur between the modified CNHs and the polar groups of phospholipids, meaning that CNH-PAMAM does not incorporate into the lipid chains, and thus, disruption of the lipid bilayer structure is avoided. This outcome is a very important observation for further evaluation of CNH-PAPAM in cell lines and in animal models. Next, we demonstrated the potential of CNH-PAMAM for complexation with insulin, as a proof of concept for its employment as a delivery platform. Importantly, our study provides comprehensive evidence of low toxicity for CNH-PAMAM both in vitro and in vivo. The assessment of cellular toxicity revealed that the modified CNHs exhibited minimal toxicity, with concentrations of 151 μg mL-1 and 349 μg mL-1, showing negligible harm to EO771 cells and mouse embryonic fibroblasts (MEFs), respectively. Moreover, the histological analysis of the mouse livers demonstrated no evidence of tissue necrosis and inflammation, or any visible signs of severe toxicity. These findings collectively indicate the safe profile of CNH-PAMAM and further contribute to the growing body of knowledge on the safe and efficient utilization of CNH-based nanomaterials in drug and protein delivery applications.
Collapse
Affiliation(s)
- Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens Athens 15771 Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Minfang Zhang
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Toshiya Okazaki
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens Athens 15771 Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
2
|
Dogan S, Paulus M, Kosfeld BR, Cewe C, Tolan M. Interaction of Human Resistin with Human Islet Amyloid Polypeptide at Charged Phospholipid Membranes. ACS OMEGA 2022; 7:22377-22382. [PMID: 35811869 PMCID: PMC9260898 DOI: 10.1021/acsomega.2c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
An X-ray reflectivity study on the interaction of recombinant human resistin (hRes) with fibrillation-prone human islet amyloid polypeptide (hIAPP) at anionic phospholipid Langmuir films as model membranes is presented. Aggregation and amyloid formation of hIAPP is considered the main mechanism of pancreatic β-cell loss in patients with type 2 diabetes mellitus. Resistin shows a chaperone-like ability, but also tends to form aggregates by itself. Resistin and hIAPP cross multiply metabolism pathways. In this study, we researched the potential protective effects of resistin against hIAPP-induced lipid membrane rupture. The results demonstrate that resistin can inhibit or prevent hIAPP adsorption even in the presence of aggregation-promoting negatively charged lipid interfaces. Moreover, we found strong hydrophobic interactions of resistin at the bare buffer-air interface.
Collapse
|
3
|
Lee A, Mason ML, Lin T, Kumar SB, Kowdley D, Leung JH, Muhanna D, Sun Y, Ortega-Anaya J, Yu L, Fitzgerald J, DeVries AC, Nelson RJ, Weil ZM, Jiménez-Flores R, Parquette JR, Ziouzenkova O. Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin. Pharmaceutics 2021; 14:pharmaceutics14010081. [PMID: 35056977 PMCID: PMC8778970 DOI: 10.3390/pharmaceutics14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes poses a high risk for debilitating complications in neural tissues, regulating glucose uptake through insulin-dependent and predominantly insulin-independent pathways. Supramolecular nanostructures provide a flexible strategy for combinatorial regulation of glycemia. Here, we compare the effects of free insulin to insulin bound to positively charged nanofibers comprised of self-assembling amino acid compounds (AACs) with an antioxidant-modified side chain moiety (AAC2) in both in vitro and in vivo models of type 1 diabetes. Free AAC2, free human insulin (hINS) and AAC2-bound-human insulin (AAC2-hINS) were tested in streptozotocin (STZ)-induced mouse model of type 1 diabetes. AAC2-hINS acted as a complex and exhibited different properties compared to free AAC2 or hINS. Mice treated with the AAC2-hINS complex were devoid of hypoglycemic episodes, had improved levels of insulin in circulation and in the brain, and increased expression of neurotransmitter taurine transporter, Slc6a6. Consequently, treatment with AAC2-hINS markedly advanced both physical and cognitive performance in mice with STZ-induced and genetic type 1 diabetes compared to treatments with free AAC2 or hINS. This study demonstrates that the flexible nanofiber AAC2 can serve as a therapeutic platform for the combinatorial treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - McKensie L. Mason
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Shashi Bhushan Kumar
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Danah Muhanna
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Yuan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - A. Courtney DeVries
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
- Correspondence: ; Tel.: +1-614-292-5034
| |
Collapse
|
4
|
Jayash SN, Cooper PR, Shelton RM, Kuehne SA, Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int J Mol Sci 2021; 22:ijms222212267. [PMID: 34830145 PMCID: PMC8624171 DOI: 10.3390/ijms222212267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.
Collapse
Affiliation(s)
- Soher N. Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
- Correspondence: or (S.N.J.); (G.P.)
| | - Paul R. Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Sarah A. Kuehne
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Gowsihan Poologasundarampillai
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
- Correspondence: or (S.N.J.); (G.P.)
| |
Collapse
|
5
|
Hanke M, Yang Y, Ji Y, Grundmeier G, Keller A. Nanoscale Surface Topography Modulates hIAPP Aggregation Pathways at Solid-Liquid Interfaces. Int J Mol Sci 2021; 22:ijms22105142. [PMID: 34067963 PMCID: PMC8152259 DOI: 10.3390/ijms22105142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
The effects that solid–liquid interfaces exert on the aggregation of proteins and peptides are of high relevance for various fields of basic and applied research, ranging from molecular biology and biomedicine to nanotechnology. While the influence of surface chemistry has received a lot of attention in this context, the role of surface topography has mostly been neglected so far. In this work, therefore, we investigate the aggregation of the type 2 diabetes-associated peptide hormone hIAPP in contact with flat and nanopatterned silicon oxide surfaces. The nanopatterned surfaces are produced by ion beam irradiation, resulting in well-defined anisotropic ripple patterns with heights and periodicities of about 1.5 and 30 nm, respectively. Using time-lapse atomic force microscopy, the morphology of the hIAPP aggregates is characterized quantitatively. Aggregation results in both amorphous aggregates and amyloid fibrils, with the presence of the nanopatterns leading to retarded fibrillization and stronger amorphous aggregation. This is attributed to structural differences in the amorphous aggregates formed at the nanopatterned surface, which result in a lower propensity for nucleating amyloid fibrillization. Our results demonstrate that nanoscale surface topography may modulate peptide and protein aggregation pathways in complex and intricate ways.
Collapse
|
6
|
Li Y, Ji W, Peng H, Zhao R, Zhang T, Lu Z, Yang J, Liu R, Zhang X. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Am J Cancer Res 2021; 11:4452-4466. [PMID: 33754071 PMCID: PMC7977443 DOI: 10.7150/thno.54176] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin, a peptide hormone, is one of the most common and effective antidiabetic drugs. Although oral administration is considered to be the most convenient and safe choice for patients, the oral bioavailability of insulin is very low due to the poor oral absorption into blood circulation. Intestinal epithelium is a major barrier for the oral absorption of insulin. Therefore, it is vital to develop intestinal permeation enhancer to increase the antidiabetic efficacy of insulin after oral administration. Methods: Charge-switchable zwitterionic polycarboxybetaine (PCB) was used to load insulin to form PCB/insulin (PCB/INS) particles through the electrostatic interaction between positively charged PCB in pH 5.0 and negatively charged insulin in 0.01 M NaOH. The opening effect of PCB/INS particles on intestinal epithelium was evaluated by detecting the changes of claudin-4 (CLDN4) protein and transepithelial electrical resistance (TEER) after incubation or removal. The mechanism was further elucidated based on the results of Western blot and fluorescence images. The PCB/INS particles were then used for type 1 diabetes mellitus therapy after oral administration. Results: PCB could load insulin with the loading efficiency above 86% at weight ratio of 8:1. PCB/INS particles achieved sustained release of insulin at pH 7.4 due to their charge-switchable ability. Surprisingly, PCB/INS particles induced the open of the tight junctions of intestinal epithelium in endocytosis-mediated lysosomal degradation pathway, which resulted in increased intestinal permeability of insulin. Additionally, the opening effect of PCB/INS particles was reversible, and the decreased expression of CLDN4 protein and TEER values were gradually recovered after particles removal. In streptozotocin-induced type 1 diabetic rats, oral administration of PCB/INS particles with diameter sub-200 nm, especially in capsules, significantly enhanced the bioavailability of insulin and achieved longer duration of hypoglycemic effect than the subcutaneously injected insulin. Importantly, there was no endotoxin and pathological change during treatment, indicating that PCB/INS particles were safe enough for in vivo application. Conclusion: These findings indicate that this system can provide a platform for oral insulin and other protein drugs delivery.
Collapse
|
7
|
Prajapati KP, Panigrahi A, Purohit S, Ansari M, Dubey K, Behera RK, Anand BG, Kar K. Osmoprotectant Coated Thermostable Gold Nanoparticles Efficiently Restrict Temperature-Induced Amyloid Aggregation of Insulin. J Phys Chem Lett 2021; 12:1803-1813. [PMID: 33577334 DOI: 10.1021/acs.jpclett.0c03492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Naturally occurring osmoprotectants are known to prevent aggregation of proteins under various stress factors including extreme pH and elevated temperature conditions. Here, we synthesized gold nanoparticles coated with selected osmolytes (proline, hydroxyproline, and glycine) and examined their effect on temperature-induced amyloid-formation of insulin hormone. These uniform, thermostable, and hemocompatible gold nanoparticles were capable of inhibiting both spontaneous and seed-induced amyloid aggregation of insulin. Both quenching and docking experiments suggest a direct interaction between the osmoprotectant-coated nanoparticles and aggregation-prone hydrophobic stretches of insulin. Circular-dichroism results confirmed the retention of insulin's native structure in the presence of these nanoparticles. Unlike the indirect solvent-mediated effect of free osmolytes, the inhibition effect of osmolyte-coated gold nanoparticles was observed to be mediated through their direct interaction with insulin. The results signify the protection of the exposed aggregation-prone domains of insulin from temperature-induced self-assembly through osmoprotectant-coated nanoparticles, and such effect may inspire the development of osmolyte-based antiamyloid nanoformulations.
Collapse
Affiliation(s)
- Kailash P Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayoushna Panigrahi
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sampreeta Purohit
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kriti Dubey
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Kumar Behera
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin G Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
9
|
Hajiraissi R, Hanke M, Gonzalez Orive A, Duderija B, Hofmann U, Zhang Y, Grundmeier G, Keller A. Effect of Terminal Modifications on the Adsorption and Assembly of hIAPP(20-29). ACS OMEGA 2019; 4:2649-2660. [PMID: 31459500 PMCID: PMC6649277 DOI: 10.1021/acsomega.8b03028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 06/10/2023]
Abstract
The assembly of peptides and proteins into nanoscale amyloid fibrils via formation of intermolecular β-sheets not only plays an important role in the development of degenerative diseases but also represents a promising approach for the synthesis of functional nanomaterials. In many biological and technological settings, peptide assembly occurs in the presence of organic and inorganic interfaces with different physicochemical properties. In an attempt to dissect the relative contributions of the different molecular interactions governing amyloid assembly at interfaces, we here present a systematic study of the effects of terminal modifications on the adsorption and assembly of the human islet amyloid polypeptide fragment hIAPP(20-29) at organic self-assembled monolayers (SAMs) presenting different functional groups (cationic, anionic, polar, or hydrophobic). Using a selection of complementary in situ and ex situ analytical techniques, we find that even this well-defined and comparatively simple model system is governed by a rather complex interplay of electrostatic interactions, hydrophobic interactions, and hydrogen bonding, resulting in a plethora of observations and dependencies, some of which are rather counterintuitive. In particular, our results demonstrate that terminal modifications can have tremendous effects on peptide adsorption and assembly dynamics, as well as aggregate morphology and molecular structure. The effects exerted by the terminal modifications can furthermore be modulated in nontrivial ways by the physicochemical properties of the SAM surface. Therefore, terminal modifications are an important factor to consider when conducting and comparing peptide adsorption and aggregation studies and may represent an additional parameter for guiding the assembly of peptide-based nanomaterials.
Collapse
Affiliation(s)
- Roozbeh Hajiraissi
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Marcel Hanke
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Alejandro Gonzalez Orive
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Belma Duderija
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Ulrike Hofmann
- B
CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Yixin Zhang
- B
CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Guido Grundmeier
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Adrian Keller
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
10
|
Hajiraissi R, Hanke M, Yang Y, Duderija B, Gonzalez Orive A, Grundmeier G, Keller A. Adsorption and Fibrillization of Islet Amyloid Polypeptide at Self-Assembled Monolayers Studied by QCM-D, AFM, and PM-IRRAS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3517-3524. [PMID: 29489382 DOI: 10.1021/acs.langmuir.7b03626] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aggregation and fibrillization of human islet amyloid polypeptide (hIAPP) plays an important role in the development of type 2 diabetes mellitus. Understanding the interaction of hIAPP with interfaces such as cell membranes at a molecular level therefore represents an important step toward new therapies. Here, we investigate the fibrillization of hIAPP at different self-assembled alkanethiol monolayers (SAMs) by quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). We find that hydrophobic interactions with the CH3-terminated SAM tend to retard hIAPP fibrillization compared to the carboxylic acid-terminated SAM where attractive electrostatic interactions lead to the formation of a three-dimensional network of interwoven fibrils. At the hydroxyl- and amino-terminated SAMs, fibrillization appears to be governed by hydrogen bonding between the peptide and the terminating groups which may even overcome electrostatic repulsion. These results thus provide fundamental insights into the molecular mechanisms governing amyloid assembly at interfaces.
Collapse
Affiliation(s)
- Roozbeh Hajiraissi
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| | - Marcel Hanke
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| | - Yu Yang
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| | - Belma Duderija
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| | - Alejandro Gonzalez Orive
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry , Paderborn University , Warburger Str. 100 , 33098 Paderborn , Germany
| |
Collapse
|
11
|
Cinar S, Möbitz S, Al-Ayoubi S, Seidlhofer BK, Czeslik C. Building Polyelectrolyte Multilayers with Calmodulin: A Neutron and X-ray Reflectivity Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3982-3990. [PMID: 28379700 DOI: 10.1021/acs.langmuir.7b00651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have studied the formation and functional properties of polyelectrolyte multilayers where calmodulin (CaM) is used as a polyanion. CaM is known to populate distinct conformational states upon binding Ca2+ and small ligand molecules. Therefore, we have also probed the effects of Ca2+ ions and trifluoperazine (TFP) as ligand molecule on the interfacial structures. Multilayers with the maximum sequence PEI-(PSS-PAH)x-CaM-PAH-CaM-PAH have been deposited on silicon wafers and characterized by X-ray and neutron reflectometry. From the analysis of all data, several remarkable conclusions can be drawn. When CaM is deposited for the second time, a much thicker sublayer is produced than in the first CaM deposition step. However, upon rinsing with PAH, very thin CaM-PAH sublayers remain. There are no indications that ligand TFP can be involved in the multilayer buildup due to strong CaM-PAH interactions. However, there is a significant increase in the multilayer thickness upon removal of Ca2+ ions from holo-CaM and an equivalent decrease in the multilayer thickness upon subsequent saturation of apo-CaM with Ca2+ ions. Presumably, CaM can still be toggled between an apo and a holo state, when it is embedded in polyelectrolyte multilayers, providing an approach to design bioresponsive interfaces.
Collapse
Affiliation(s)
- Süleyman Cinar
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Simone Möbitz
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Samy Al-Ayoubi
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | | | - Claus Czeslik
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| |
Collapse
|
12
|
Hajiraissi R, Giner I, Grundmeier G, Keller A. Self-Assembly, Dynamics, and Polymorphism of hIAPP(20-29) Aggregates at Solid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:372-381. [PMID: 27935715 DOI: 10.1021/acs.langmuir.6b03288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The misfolding and subsequent assembly of proteins and peptides into insoluble amyloid structures play important roles in the development of numerous diseases. The dynamics of self-assembly and the morphology of the resulting aggregates critically depend on various environmental factors and especially on the presence of interfaces. Here, we show in detail how the presence of surfaces with different physicochemical properties influences the assembly dynamics and especially the aggregate morphology of hIAPP(20-29), an amyloidogenic fragment of the peptide hormone human islet amyloid polypeptide (hIAPP), which is involved in the development of type 2 diabetes. Time-lapse atomic force microscopy is employed to study the assembly dynamics of hIAPP(20-29) and the morphology of the resulting aggregates in bulk solution as well as at hydrophilic and hydrophobic model surfaces. We find that the presence of hydrophilic mica surfaces promotes fibrillation when compared with the assembly in bulk solution and results in a more pronounced polymorphism. Three fibrillar species are found to coexist on the mica surface, that is, straight, coiled, and ribbon-like fibrils, whereas only the straight and coiled fibrils are observed in bulk solution after comparable incubation times. In addition, the straight and coiled fibrils assembled at the mica surface have significantly different dimensions compared with those assembled in bulk solution. The three fibrillar species found on the mica surface most likely form independently by lateral association of arbitrary numbers of protofibrils with about 2 nm height. On hydrophobic hydrocarbon surfaces, fibrillation is retarded but not completely suppressed, in contrast to previous observations for full-length hIAPP(1-37). Our results show that peptide-surface interactions may induce diverse, peptide-specific alterations of amyloid assembly dynamics and fibrillar polymorphism. They may therefore contribute to a deeper understanding of the molecular processes that govern amyloid aggregation at different surfaces.
Collapse
Affiliation(s)
- Roozbeh Hajiraissi
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Ignacio Giner
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| |
Collapse
|
13
|
Martel A, Antony L, Gerelli Y, Porcar L, Fluitt A, Hoffmann K, Kiesel I, Vivaudou M, Fragneto G, de Pablo JJ. Membrane Permeation versus Amyloidogenicity: A Multitechnique Study of Islet Amyloid Polypeptide Interaction with Model Membranes. J Am Chem Soc 2016; 139:137-148. [PMID: 27997176 DOI: 10.1021/jacs.6b06985] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Islet amyloid polypeptide (IAPP) is responsible for cell depletion in the pancreatic islets of Langherans, and for multiple pathological consequences encountered by patients suffering from type 2 Diabetes Mellitus. We have examined the amyloidogenicity and cytotoxic mechanisms of this peptide by investigating model-membrane permeation and structural effects of fragments of the human IAPP and several rat IAPP mutants. In vitro experiments and molecular dynamics simulations reveal distinct physical segregation, membrane permeation, and amyloid aggregation processes that are mediated by two separate regions of the peptide. These observations suggest a "detergent-like" mechanism, where lipids are extracted from the bilayer by the N-terminus of IAPP, and integrated into amyloid aggregates. The amyloidogenic aggregation would kinetically compete with the process of membrane permeation and, therefore, inhibit it. This hypothesis represents a new perspective on the mechanism underlying the membrane disruption by amyloid peptides, and could influence the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Anne Martel
- The Institut Laue Langevin , 38042 Grenoble, France
| | - Lucas Antony
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Yuri Gerelli
- The Institut Laue Langevin , 38042 Grenoble, France
| | | | - Aaron Fluitt
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Kyle Hoffmann
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Irena Kiesel
- The Institut Laue Langevin , 38042 Grenoble, France
| | - Michel Vivaudou
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS , 38044 Grenoble, France
| | | | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Junghans A, Watkins EB, Majewski J, Miranker A, Stroe I. Influence of the Human and Rat Islet Amyloid Polypeptides on Structure of Phospholipid Bilayers: Neutron Reflectometry and Fluorescence Microscopy Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4382-4391. [PMID: 27065348 DOI: 10.1021/acs.langmuir.6b00825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neutron reflectivity (NR) and fluorescent microscopy (FM) were used to study the interactions of human (hIAPP) and rat (rIAPP) islet amyloid polypeptides with several formulations of supported model lipid bilayers at the solid-liquid interface. Aggregation and deposition of islet amyloid polypeptide is correlated with the pathology of many diseases, including Alzheimer's, Parkinson, and type II diabetes (T2DM). A central component of T2DM pathology is the deposition of fibrils in the endocrine pancreas, which is toxic to the insulin secreting β-cells. The molecular mechanism by which the cell death occurs is not yet understood, but existing evidence points toward interactions of IAPP oligomers with cellular membranes in a manner leading to loss of their integrity. Our NR and FM results showed that the human sequence variant, hIAPP, had little or no effect on bilayers composed of saturated-acyl chains like zwitterionic DPPC, anionic DPPG, and mixed 80:20 mol % DPPC:DPPG bilayers. In marked contrast, the bilayer structure and stability of anionic unsaturated DOPG were sensitive to protein interaction, and the bilayer was partly solubilized by hIAPP under the conditions used here. The rIAPP, which is considered less toxic, had no perturbing effects on any of the above membrane formulations. Understanding the conditions that result in membrane disruption by hIAPP can be crucial in developing counter strategies to fight T2DM and also physicochemically similar neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
| | | | - Jaroslaw Majewski
- Department of Chemical Engineering University of California, Davis , Davis, California 95616, United States
| | - Andrew Miranker
- Department of Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Izabela Stroe
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
15
|
Xu ZX, Zhang Q, Ma GL, Chen CH, He YM, Xu LH, Zhang Y, Zhou GR, Li ZH, Yang HJ, Zhou P. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide. J Diabetes Res 2016; 2016:1867059. [PMID: 28074190 PMCID: PMC5198260 DOI: 10.1155/2016/1867059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (-)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes.
Collapse
Affiliation(s)
- Zhi-Xue Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Gong-Li Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cong-Heng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan-Ming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Li-Hui Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuan Zhang
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Guang-Rong Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhen-Hua Li
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hong-Jie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- *Hong-Jie Yang: and
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- *Ping Zhou:
| |
Collapse
|
16
|
Koo J, Erlkamp M, Grobelny S, Steitz R, Czeslik C. Pressure-induced protein adsorption at aqueous-solid interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8025-8030. [PMID: 23725210 DOI: 10.1021/la401296f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There seems to be a general relation between the standard Gibbs energy change of unfolding, ΔG°unf, of a protein and its affinity to aqueous-solid interfaces. So-called "hard" proteins (ΔG°unf is large) are found to adsorb less strongly to such interfaces than "soft" proteins (ΔG°unf is small). Here, we provide direct support for this rule by using high pressure to modulate the folding stability of a protein. We have performed high-pressure total internal reflection fluorescence (HP-TIRF) spectroscopy and high-pressure neutron reflectometry (HP-NR) to measure the degree of adsorption and the structure of lysozyme on planar solid surfaces as a function of pressure for the first time. By carrying out these experiments at hydrophilic and hydrophobic surfaces with varying concentrations of glycerol, we have found strong evidence that ΔG°unf has indeed a direct influence. At high pressures, there is a larger degree of lysozyme adsorption, probably because lysozyme becomes a "soft" protein under these conditions. The results of this study demonstrate that high pressure is a very useful tool to explore thermodynamics of protein-interface interactions.
Collapse
Affiliation(s)
- Juny Koo
- Fakultät Chemie, TU Dortmund University, D-44221 Dortmund, Germany
| | | | | | | | | |
Collapse
|
17
|
Nault L, Guo P, Jain B, Bréchet Y, Bruckert F, Weidenhaupt M. Human insulin adsorption kinetics, conformational changes and amyloidal aggregate formation on hydrophobic surfaces. Acta Biomater 2013; 9:5070-9. [PMID: 23022543 DOI: 10.1016/j.actbio.2012.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
The formation of insulin amyloidal aggregates on material surfaces is a well-known phenomenon with important pharmaceutical and medical implications. Using surface plasmon resonance imaging, we monitor insulin adsorption on model hydrophobic surfaces in real time. Insulin adsorbs in two phases: first, a very fast phase (less than 1 min), where a protein monolayer forms, followed by a slower one that can last for at least 1h, where multilayered protein aggregates are present. The dissociation kinetics reveals the presence of two insulin populations that slowly interconvert: a rapidly dissociating pool and a pool of strongly bound insulin aggregates. After 1h of contact between the protein solution and the surface, the adsorbed insulin has practically stopped dissociating from the surface. The conformation of adsorbed insulin is probed by attenuated total reflection-Fourier transform infrared spectroscopy. Characteristic shifts in the amide A and amide II' bands are associated with insulin adsorption. The amide I band is also distinct from that of soluble or aggregated insulin, and it slowly evolves in time. A 1708 cm⁻¹ peak is observed, which characterizes insulin adsorbed for times longer than 30 min. Finally, Thioflavin T, a marker of extended β-sheet structures present in amyloid fibers, binds to adsorbed insulin after 30-40 min. Altogether, these results reveal that the conformational change induced in insulin upon binding to hydrophobic surfaces allows further insulin binding from the solution. Adsorbed insulin is thus an intermediate along the α-to-β structural transition that results in the formation of amyloidal fibers on these material surfaces.
Collapse
|
18
|
Keller A, Fritzsche M, Ogaki R, Bald I, Facsko S, Dong M, Kingshott P, Besenbacher F. Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation. J Chem Phys 2012; 134:104705. [PMID: 21405182 DOI: 10.1063/1.3561292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydrophobicity of surfaces has a strong influence on their interactions with biomolecules such as proteins. Therefore, for in vitro studies of bio-surface interactions model surfaces with tailored hydrophobicity are of utmost importance. Here, we present a method for tuning the hydrophobicity of atomically flat mica surfaces by hyperthermal Ar ion irradiation. Due to the sub-100 eV energies, only negligible roughening of the surface is observed at low ion fluences and also the chemical composition of the mica crystal remains almost undisturbed. However, the ion irradiation induces the preferential removal of the outermost layer of K(+) ions from the surface, leading to the exposure of the underlying aluminosilicate sheets which feature a large number of centers for C adsorption. The irradiated surface thus exhibits an enhanced chemical reactivity toward hydrocarbons, resulting in the adsorption of a thin hydrocarbon film from the environment. Aging these surfaces under ambient conditions leads to a continuous increase of their contact angle until a fully hydrophobic surface with a contact angle >80° is obtained after a period of about 3 months. This method thus enables the fabrication of ultrasmooth biological model surfaces with precisely tailored hydrophobicity.
Collapse
Affiliation(s)
- Adrian Keller
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Evers F, Steitz R, Tolan M, Czeslik C. Reduced protein adsorption by osmolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6995-7001. [PMID: 21568286 DOI: 10.1021/la2010908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Osmolytes are substances that affect osmosis and are used by cells to adapt to environmental stress. Here, we report a neutron reflectivity study on the influence of some osmolytes on protein adsorption at solid-liquid interfaces. Bovine ribonuclease A (RNase) and bovine insulin were used as model proteins adsorbing at a hydrophilic silica and at a hydrophobic polystyrene surface. From the neutron reflectivity data, the adsorbed protein layers were characterized in terms of layer thickness, protein packing density, and adsorbed protein mass in the absence and presence of urea, trehalose, sucrose, and glycerol. All data point to the clear effect of these nonionic cosolvents on the degree of protein adsorption. For example, 1 M sucrose leads to a reduction of the adsorbed amount of RNase by 39% on a silica surface and by 71% on a polystyrene surface. Trehalose was found to exhibit activity similar to that of sucrose. The changes in adsorbed protein mass can be attributed to a decreased packing density of the proteins in the adsorbed layers. Moreover, we investigated insulin adsorption at a hydrophobic surface in the absence and presence of glycerol. The degree of insulin adsorption is decreased by even 80% in the presence of 4 M of glycerol. The results of this study demonstrate that nonionic cosolvents can be used to tune and control nonspecific protein adsorption at aqueous-solid interfaces, which might be relevant for biomedical applications.
Collapse
Affiliation(s)
- Florian Evers
- Fakultät Chemie, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | | | | |
Collapse
|
20
|
Keller A, Fritzsche M, Yu YP, Liu Q, Li YM, Dong M, Besenbacher F. Influence of hydrophobicity on the surface-catalyzed assembly of the islet amyloid polypeptide. ACS NANO 2011; 5:2770-2778. [PMID: 21452804 DOI: 10.1021/nn1031998] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The islet amyloid polypeptide (IAPP) is a hormonal factor secreted by the β-cells in the pancreas. Aggregation of misfolded IAPP molecules and subsequent assembly of amyloid nanofibrils are critical for the development of type 2 diabetes mellitus. In the physiological environment, amyloid aggregation is affected by the presence of interfaces such as cell membranes. The physicochemical properties of the interface dictates the interaction of the peptide with the surface, i.e., electrostatic and hydrophobic interactions on hydrophilic and hydrophobic surfaces, respectively. We have studied the influence of hydrophobicity on the surface-catalyzed assembly of IAPP on ultrasmooth hydrocarbon films grown on ion-beam-modified mica surfaces by atomic force microscopy. The contact angle θ of these surfaces can be tuned continuously in the range from ≤20° to ∼90° by aging the samples without significant changes of the chemical composition or the topography of the surface. On hydrophilic surfaces with a θ of ∼20°, electrostatic interactions induce the assembly of IAPP nanofibrils, whereas aggregation of large (∼2.6 nm) oligomers is observed at hydrophobic surfaces with a θ of ∼90°. At intermediate contact angles, the interplay between electrostatic and hydrophobic substrate interactions dictates the pathway of aggregation with fibrillation getting continuously delayed when the contact angle is increased. In addition, the morphology of the formed protofibrils and mature fibrils at intermediate contact angles differs from those observed at more hydrophilic surfaces. These results might contribute to the understanding of the surface-catalyzed assembly of different amyloid aggregates and may also have implications for the technologically relevant controlled synthesis of amyloid nanofibrils of desired morphology.
Collapse
Affiliation(s)
- Adrian Keller
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
21
|
Weise K, Radovan D, Gohlke A, Opitz N, Winter R. Interaction of hIAPP with model raft membranes and pancreatic beta-cells: cytotoxicity of hIAPP oligomers. Chembiochem 2010; 11:1280-90. [PMID: 20440729 DOI: 10.1002/cbic.201000039] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Type II diabetes mellitus (T2DM) is associated with beta-cell failure, which correlates with the formation of pancreatic islet amyloid deposits. The human islet amyloid polypeptide (hIAPP) is the major component of islet amyloid and undergoes structural changes followed by self-association and pathological tissue deposition during aggregation in T2DM. There is clear evidence that the aggregation process is accelerated in the presence of particular lipid membranes. Whereas hIAPP aggregation has been extensively studied in homogeneous model membrane systems, especially negatively charged lipid bilayers, information on the interaction of hIAPP with heterogeneous model raft membranes has been missing until now. In the present study, we focus on the principles of aggregation and amyloid formation of hIAPP in the presence of model raft membranes. Time-lapse tapping mode AFM and confocal fluorescence microscopy experiments followed membrane permeabilization and localization of hIAPP in the raft membrane. Together with the ThT and WST-1 assay, the data revealed elevated cytotoxicity of hIAPP oligomers on INS-1E cells.
Collapse
Affiliation(s)
- Katrin Weise
- Physical Chemistry I, Biophysical Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
22
|
Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S. Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3453-3461. [PMID: 20017535 DOI: 10.1021/la902980d] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fibrillation process of the islet amyloid polypeptide (IAPP) and its fragment (IAPP(20-29)) was studied by means of Thioflavin T (ThT) fluorescence and transmission electron microscopy in the absence and presence of N-isopropylacrylamide:N-tert-butylacrylamide (NiPAM:BAM) copolymeric nanoparticles. The process was found to be strongly affected by the presence of the nanoparticles, which retard protein fibrillation as a function of the chemical surface properties of the nanoparticles. The NiPAM:BAM ratio was varied from 50:50 to 100:0. The nanoparticles with higher fraction of NiPAM imposed the strongest retardation of IAPP and IAPP(20-29) fibrillation. These particles have the strongest hydrogen bonding capacity due to the less bulky N-isopropyl group and thus less steric hindrance of the hydrogen-bonding groups of the nanoparticle polymer backbone. Kinetic fibrillation data, as monitored by ThT fluorescence and supported by surface plasmon resonance experiments, suggest that the peptide is strongly absorbed onto the surface of the nanoparticles. This interaction reduces the concentration of peptide free in solution available to proceed to fibrillation which results in an increased lag time of fibrillation, observed as a delayed onset of ThT fluorescence increase, plus a reduction of the amount of fibrils formed as indicated by the equilibrium values at the end of the fibrillation reaction. For the fragment (IAPP(20-29)), the presence of nanoparticles changes the mechanism of association from monomers to fibrils, by interfering with early oligomeric species along the fibrillation pathway.
Collapse
Affiliation(s)
- C Cabaleiro-Lago
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
23
|
Evers F, Jeworrek C, Tiemeyer S, Weise K, Sellin D, Paulus M, Struth B, Tolan M, Winter R. Elucidating the Mechanism of Lipid Membrane-Induced IAPP Fibrillogenesis and Its Inhibition by the Red Wine Compound Resveratrol: A Synchrotron X-ray Reflectivity Study. J Am Chem Soc 2009; 131:9516-21. [DOI: 10.1021/ja8097417] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Evers
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Christoph Jeworrek
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Sebastian Tiemeyer
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Katrin Weise
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Daniel Sellin
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Paulus
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Bernd Struth
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Metin Tolan
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| | - Roland Winter
- Faculty of Chemistry, TU Dortmund, 44221 Dortmund, Germany, Faculty of Physics/DELTA, TU Dortmund, 44221 Dortmund, Germany, and Deutsches Elektronen-Synchrotron, HASYLAB, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
24
|
Langkilde AE, Vestergaard B. Methods for structural characterization of prefibrillar intermediates and amyloid fibrils. FEBS Lett 2009; 583:2600-9. [PMID: 19481541 DOI: 10.1016/j.febslet.2009.05.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/15/2022]
Abstract
Protein fibrillation is first and foremost a structural phenomenon. Adequate structural investigation of the central conformational individuals of the fibrillation process is however exceedingly difficult. This is due to the nature of the process, which may be described as a dynamically evolving equilibrium between a large number of structural species. These are furthermore of highly diverging sizes and present in very uneven amounts and timeframes. Different structural methods have different strengths and limitations. These, and in particular recent advances within solution analysis of the undisturbed equilibrium using small angle X-ray scattering, are reviewed here.
Collapse
Affiliation(s)
- Annette Eva Langkilde
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
25
|
Fluorescence microscopy studies on islet amyloid polypeptide fibrillation at heterogeneous and cellular membrane interfaces and its inhibition by resveratrol. FEBS Lett 2009; 583:1439-45. [DOI: 10.1016/j.febslet.2009.03.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/09/2009] [Accepted: 03/24/2009] [Indexed: 02/01/2023]
|