1
|
Zhang X, Tamaki H, Kikukawa T, Fujiwara T, Matsuki Y. Structural changes of Natronomonas pharaonis halorhodopsin in its late photocycle revealed by solid-state NMR spectroscopy. Biophys Chem 2024; 315:107329. [PMID: 39369577 DOI: 10.1016/j.bpc.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Protein Research, Osaka University, Japan
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Japan
| | | | | | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| |
Collapse
|
2
|
Hamada C, Murabe K, Tsukamoto T, Kikukawa T. Direct detection of the chloride release and uptake reactions of Natronomonas pharaonis halorhodopsin. J Biol Chem 2024; 300:107712. [PMID: 39178949 PMCID: PMC11421326 DOI: 10.1016/j.jbc.2024.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.
Collapse
Affiliation(s)
- Chihaya Hamada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Keisuke Murabe
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Functional Mechanism of Cl --Pump Rhodopsin and Its Conversion into H + Pump. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:55-71. [PMID: 33398807 DOI: 10.1007/978-981-15-8763-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cl--pump rhodopsin is the second discovered microbial rhodopsin. Although its physiological role has not been fully clarified, its functional mechanism has been studied as a model for anion transporters. After the success of neural activation by channel rhodopsin, the first Cl--pump halorhodopsin (HR) had become widely used as a neural silencer. The emergence of artificial and natural anion channel rhodopsins lowered the importance of HRs. However, the longer absorption maxima of approximately 585-600 nm for HRs are still advantageous for applications in mammalian brains and collaborations with neural activators possessing shorter absorption maxima. In this chapter, the variation and functional mechanisms of Cl- pumps are summarized. After the discovery of HR, Cl--pump rhodopsins were confined to only extremely halophilic haloarchaea. However, after 2014, two Cl--pump groups were newly discovered in marine and terrestrial bacteria. These Cl- pumps are phylogenetically distinct from HRs and have unique characteristics. In particular, the most recently identified Cl- pump has close similarity with the H+ pump bacteriorhodopsin and was converted into the H+ pump by a single amino acid replacement.
Collapse
|
4
|
Inoue K. The Study and Application of Photoreceptive Membrane Protein, Rhodopsin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Kouyama T, Kawaguchi H, Nakanishi T, Kubo H, Murakami M. Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Biophys J 2016; 108:2680-90. [PMID: 26039169 PMCID: PMC4457492 DOI: 10.1016/j.bpj.2015.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/15/2023] Open
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) functions as a light-driven halide ion pump. In the presence of halide ions, the photochemical reaction of pHR is described by the scheme: K→ L1 → L2 → N → O → pHR′ → pHR. Here, we report light-induced structural changes of the pHR-bromide complex observed in the C2 crystal. In the L1-to-L2 transition, the bromide ion that initially exists in the extracellular vicinity of retinal moves across the retinal Schiff base. Upon the formation of the N state with a bromide ion bound to the cytoplasmic vicinity of the retinal Schiff base, the cytoplasmic half of helix F moves outward to create a water channel in the cytoplasmic interhelical space, whereas the extracellular half of helix C moves inward. During the transition from N to an N-like reaction state with retinal assuming the 13-cis/15-syn configuration, the translocated bromide ion is released into the cytoplasmic medium. Subsequently, helix F relaxes into its original conformation, generating the O state. Anion uptake from the extracellular side occurs when helix C relaxes into its original conformation. These structural data provide insight into the structural basis of unidirectional anion transport.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan; RIKEN Harima Branch, 1-1-1, Kouto, Sayo, Hyogo, Japan.
| | - Haruki Kawaguchi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiroki Kubo
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Kikukawa T, Kusakabe C, Kokubo A, Tsukamoto T, Kamiya M, Aizawa T, Ihara K, Kamo N, Demura M. Probing the Cl − -pumping photocycle of pharaonis halorhodopsin: Examinations with bacterioruberin, an intrinsic dye, and membrane potential-induced modulation of the photocycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:748-58. [DOI: 10.1016/j.bbabio.2015.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
7
|
Shibasaki K, Shigemura H, Kikukawa T, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Thr218 in the light-driven anion pump halorhodopsin from Natronomonas pharaonis. Biochemistry 2013; 52:9257-68. [PMID: 24298916 DOI: 10.1021/bi401295e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Halorhodopsin (HR) is an inward-directed light-driven halogen ion pump, and NpHR is a HR from Natronomonas pharaonis. Unphotolyzed NpHR binds halogen ion in the vicinity of the Schiff base, which links retinal to Lys256. This halogen ion is transported during the photocycle. We made various mutants of Thr218, which is located one half-turn up from the Schiff base to the cytoplasm (CP) channel, and analyzed the photocycle using a sequential irreversible model. Four photochemically defined intermediates (P(i), i = 1-4) were adequate to describe the photocycle. The third component, P₃, was a quasi-equilibrium complex between the N and O intermediates, where a N ↔ O + Cl⁻ equilibrium was attained. The K(d,N↔O) values of this equilibrium for various mutants were determined, and the value of Thr (wild type) was the highest. The partial molar volume differences between N and O, ΔV(N→O), were estimated from the pressure dependence of K(d,N↔O). A comparison between K(d,N↔O) and ΔV(N→O) led to the conclusion that water entry by the F-helix opening at O may occur, which may increase K(d,N↔O). For some mutants, however, large ΔV(N→O) values were found, whereas the K(d,N↔O) values were small. This suggests that the special coordination of a water molecule with the OH group of Thr is necessary for the increase in K(d,N↔O). Mutants with a small K(d,N↔O) showed low pumping activities in the presence of inside negative membrane potential, while the mutant activities were not different in the absence of membrane potential. The effect of the mutation on the pumping activities is discussed.
Collapse
Affiliation(s)
- Kousuke Shibasaki
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Furutani Y, Kandori H. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:598-605. [PMID: 24041645 DOI: 10.1016/j.bbabio.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
Microbial rhodopsins are classified into type-I rhodopsins, which utilize light energy to perform wide varieties of function, such as proton pumping, ion pumping, light sensing, cation channels, and so on. The crystal structures of several type-I rhodopsins were solved and the molecular mechanisms have been investigated based on the atomic structures. However, the crystal structures of proteins of interest are not always available and the basic architectures are sometimes quite similar, which obscures how the proteins achieve different functions. Stimulus-induced difference FTIR spectroscopy is a powerful tool to detect minute structural changes providing a clue for elucidating the molecular mechanisms. In this review, the studies on type-I rhodopsins from fungi and marine bacteria, whose crystal structures have not been solved yet, were summarized. Neurospora rhodopsin and Leptosphaeria rhodopsin found from Fungi have sequence similarity. The former has no proton pumping function, while the latter has. Proteorhodopsin is another example, whose proton pumping machinery is altered at alkaline and acidic conditions. We described how the structural changes of protein were different and how water molecules were involved in them. We reviewed the results on dynamics of the internal water molecules in pharaonis halorhodopsin as well. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
9
|
Furutani Y, Fujiwara K, Kimura T, Kikukawa T, Demura M, Kandori H. Dynamics of Dangling Bonds of Water Molecules in pharaonis Halorhodopsin during Chloride Ion Transportation. J Phys Chem Lett 2012; 3:2964-2969. [PMID: 26292234 DOI: 10.1021/jz301287n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion transportation via the chloride ion pump protein pharaonis halorhodopsin (pHR) occurs through the sequential formation of several intermediates during a photocyclic reaction. Although the structural details of each intermediate state have been studied, the role of water molecules in the translocation of chloride ions inside of the protein at physiological temperatures remains unclear. To analyze the structural dynamics of water inside of the protein, we performed time-resolved Fourier transform infrared (FTIR) spectroscopy under H2O or H2(18)O hydration and successfully assigned water O-H stretching bands. We found that a dangling water band at 3626 cm(-1) in pHR disappears in the L1 and L2 states. On the other hand, relatively intense positive bands at 3605 and 3608 cm(-1) emerged upon the formation of the X(N) and O states, respectively, suggesting that the chloride transportation is accompanied by dynamic rearrangement of the hydrogen-bonding network of the internal water molecules in pHR.
Collapse
Affiliation(s)
- Yuji Furutani
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Kuniyo Fujiwara
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Tetsunari Kimura
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Kikukawa
- ¶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- ¶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideki Kandori
- #Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Homotrimer formation and dissociation of pharaonis halorhodopsin in detergent system. Biophys J 2012; 102:2906-15. [PMID: 22735541 DOI: 10.1016/j.bpj.2012.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
Halorhodopsin from NpHR is a light-driven Cl(-) pump that forms a trimeric NpHR-bacterioruberin complex in the native membrane. In the case of NpHR expressed in Escherichia coli cell, NpHR forms a robust homotrimer in a detergent DDM solution. To identify the important residue for the homotrimer formation, we carried out mutation experiments on the aromatic amino acids expected to be located at the molecular interface. The results revealed that Phe(150) was essential to form and stabilize the NpHR trimer in the DDM solution. Further analyses for examining the structural significance of Phe(150) showed the dissociation of the trimer in F150A (dimer) and F150W (monomer) mutants. Only the F150Y mutant exhibited dissociation into monomers in an ionic strength-dependent manner. These results indicated that spatial positions and interactions between F150-aromatic side chains were crucial to homotrimer stabilization. This finding was supported by QM calculations. In a functional respect, differences in the reaction property in the ground and photoexcited states were revealed. The analysis of photointermediates revealed a decrease in the accumulation of O, which is important for Cl(-) release, and the acceleration of the decay rate in L1 and L2, which are involved in Cl(-) transfer inside the molecule, in the trimer-dissociated mutants. Interestingly, the affinity of them to Cl(-) in the photoexcited state increased rather than the trimer, whereas that in the ground state was almost the same without relation to the oligomeric state. It was also observed that the efficient recovery of the photocycle to the ground state was inhibited in the mutants. In addition, a branched pathway that was not included in Cl(-) transportation was predicted. These results suggest that the trimer assembly may contribute to the regulation of the dynamics in the excited state of NpHR.
Collapse
|
11
|
Yamashita Y, Kikukawa T, Tsukamoto T, Kamiya M, Aizawa T, Kawano K, Miyauchi S, Kamo N, Demura M. Expression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2905-12. [PMID: 21925140 DOI: 10.1016/j.bbamem.2011.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
Salinarum halorhodopsin (HsHR), a light-driven chloride ion pump of haloarchaeon Halobacterium salinarum, was heterologously expressed in Escherichia coli. The expressed HsHR had no color in the E. coli membrane, but turned purple after solubilization in the presence of all-trans retinal. This colored HsHR was purified by Ni-chelate chromatography in a yield of 3-4 mg per liter culture. The purified HsHR showed a distinct chloride pumping activity by incorporation into the liposomes, and showed even in the detergent-solubilized state, its typical behaviors in both the unphotolyzed and photolyzed states. Upon solubilization, HsHR expressed in the E. coli membrane attains the proper folding and a trimeric assembly comparable to those in the native membranes.
Collapse
Affiliation(s)
- Yasutaka Yamashita
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Inoue K, Sudo Y, Homma M, Kandori H. Spectrally Silent Intermediates during the Photochemical Reactions of Salinibacter Sensory Rhodopsin I. J Phys Chem B 2011; 115:4500-8. [DOI: 10.1021/jp2000706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
13
|
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis. J Mol Biol 2010; 396:564-79. [DOI: 10.1016/j.jmb.2009.11.061] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
14
|
Sasaki T, Aizawa T, Kamiya M, Kikukawa T, Kawano K, Kamo N, Demura M. Effect of Chloride Binding on the Thermal Trimer−Monomer Conversion of Halorhodopsin in the Solubilized System. Biochemistry 2009; 48:12089-95. [DOI: 10.1021/bi901380c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Tomoyasu Aizawa
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakatsu Kamiya
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiichi Kawano
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|