1
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
2
|
Tachi Y, Itoh SG, Okumura H. Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophys Physicobiol 2022; 19:1-18. [PMID: 35666692 PMCID: PMC9135617 DOI: 10.2142/biophysico.bppb-v19.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuhei Tachi
- Department of Physics, Graduate school of Science, Nagoya University
| | - Satoru G. Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences
| |
Collapse
|
3
|
Okumura H, Itoh SG, Nakamura K, Kawasaki T. Role of Water Molecules and Helix Structure Stabilization in the Laser-Induced Disruption of Amyloid Fibrils Observed by Nonequilibrium Molecular Dynamics Simulations. J Phys Chem B 2021; 125:4964-4976. [PMID: 33961416 DOI: 10.1021/acs.jpcb.0c11491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Water plays a crucial role in the formation and destruction of biomolecular structures. The mechanism for destroying biomolecular structures was thought to be an active breaking of hydrogen bonds by water molecules. However, using nonequilibrium molecular dynamics simulations, in which an amyloid-β amyloid fibril was destroyed via infrared free-electron laser (IR-FEL) irradiation, we discovered a new mechanism, in which water molecules disrupt protein aggregates. The intermolecular hydrogen bonds formed by C═O and N-H in the fibril are broken at each pulse of laser irradiation. These bonds spontaneously re-form after the irradiation in many cases. However, when a water molecule happens to enter the gap between C═O and N-H, it inhibits the re-formation of the hydrogen bonds. Such sites become defects in the regularly aligned hydrogen bonds, from which all hydrogen bonds in the intermolecular β-sheet are broken as the fraying spreads. This role of water molecules is entirely different from other known mechanisms. This new mechanism can explain the recent experiments showing that the amyloid fibrils are not destroyed by laser irradiation under dry conditions. Additionally, we found that helix structures form more after the amyloid disruption; this is because the resonance frequency is different in a helix structure. Our findings provide a theoretical basis for the application of IR-FEL to the future treatment of amyloidosis.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma 371-8514, Japan
| | - Takayasu Kawasaki
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Promotion and Inhibition of Amyloid-β Peptide Aggregation: Molecular Dynamics Studies. Int J Mol Sci 2021; 22:ijms22041859. [PMID: 33668406 PMCID: PMC7918115 DOI: 10.3390/ijms22041859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
Aggregates of amyloid-β (Aβ) peptides are known to be related to Alzheimer’s disease. Their aggregation is enhanced at hydrophilic–hydrophobic interfaces, such as a cell membrane surface and air-water interface, and is inhibited by polyphenols, such as myricetin and rosmarinic acid. We review molecular dynamics (MD) simulation approaches of a full-length Aβ peptide, Aβ40, and Aβ(16–22) fragments in these environments. Since these peptides have both hydrophilic and hydrophobic amino acid residues, they tend to exist at the interfaces. The high concentration of the peptides accelerates the aggregation there. In addition, Aβ40 forms a β-hairpin structure, and this structure accelerates the aggregation. We also describe the inhibition mechanism of the Aβ(16–22) aggregation by polyphenols. The aggregation of Aβ(16–22) fragments is caused mainly by the electrostatic attraction between charged amino acid residues known as Lys16 and Glu22. Since polyphenols form hydrogen bonds between their hydroxy and carboxyl groups and these charged amino acid residues, they inhibit the aggregation.
Collapse
|
5
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
6
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:461-504. [DOI: 10.1016/bs.pmbts.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
9
|
Abstract
The aggregation of the Aβ peptide (Aβ1-42) to form fibrils is a key feature of Alzheimer's disease. The mechanism is thought to be a nucleation stage followed by an elongation process. The elongation stage involves the consecutive addition of monomers to one end of the growing fibril. The aggregation process proceeds in a stop-and-go fashion and may involve off-pathway aggregates, complicating experimental and computational studies. Here we present exploration of a well-defined region in the free and potential energy landscapes for the Aβ17-42 pentamer. We find that the ideal aggregation process agrees with the previously reported dock-lock mechanism. We also analyze a large number of additional stable structures located on the multifunnel energy landscape, which constitute kinetic traps. The key contributors to the formation of such traps are misaligned strong interactions, for example the stacking of F19 and F20, as well as entropic contributions. Our results suggest that folding templates for aggregation are a necessity and that aggregation studies could employ such species to obtain a more detailed description of the process.
Collapse
Affiliation(s)
- Konstantin Röder
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
10
|
Katyal N, Deep S. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view. Phys Chem Chem Phys 2018; 19:19120-19138. [PMID: 28702592 DOI: 10.1039/c7cp02912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| |
Collapse
|
11
|
Khatua P, Sinha SK, Bandyopadhyay S. Size-Dependent Conformational Features of Aβ17–42 Protofilaments from Molecular Simulation Studies. J Chem Inf Model 2017; 57:2378-2392. [DOI: 10.1021/acs.jcim.7b00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prabir Khatua
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipta Kumar Sinha
- Department
of Chemistry, Indian Institute of Technology Ropar, Ropar 140001, India
| | - Sanjoy Bandyopadhyay
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
12
|
Saini RK, Shuaib S, Goyal B. Molecular insights into Aβ42protofibril destabilization with a fluorinated compound D744: A molecular dynamics simulation study. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| | - Suniba Shuaib
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| | - Bhupesh Goyal
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| |
Collapse
|
13
|
Shuaib S, Saini RK, Goyal D, Goyal B. Insights into the Inhibitory Mechanism of Dicyanovinyl-Substituted J147 Derivative against Aβ42
Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201601970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Rajneet Kaur Saini
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Bhupesh Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| |
Collapse
|
14
|
Nagel-Steger L, Owen MC, Strodel B. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Chembiochem 2016; 17:657-76. [PMID: 26910367 DOI: 10.1002/cbic.201500623] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/27/2022]
Abstract
The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Macdonald B, McCarley S, Noeen S, van Giessen AE. β-Hairpin Crowding Agents Affect α-Helix Stability in Crowded Environments. J Phys Chem B 2016; 120:650-9. [DOI: 10.1021/acs.jpcb.5b10575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bryanne Macdonald
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Shannon McCarley
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Sundus Noeen
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Alan E. van Giessen
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| |
Collapse
|
16
|
Abstract
Amyloid-β is an intrinsically disordered protein that forms fibrils in the brains of patients with Alzheimer's disease. To explore factors that affect the process of fibril growth, we computed the free energy associated with disordered amyloid-β monomers being added to growing amyloid fibrils using extensive molecular dynamics simulations coupled with umbrella sampling. We find that the mechanisms of Aβ40 and Aβ42 fibril elongation have many features in common, including the formation of an obligate on-pathway β-hairpin intermediate that hydrogen bonds to the fibril core. In addition, our data lead to new hypotheses for how fibrils may serve as secondary nucleation sites that can catalyze the formation of soluble oligomers, a finding in agreement with recent experimental observations. These data provide a detailed mechanistic description of amyloid-β fibril elongation and a structural link between the disordered free monomer and the growth of amyloid fibrils and soluble oligomers.
Collapse
Affiliation(s)
- Thomas Gurry
- Computational and Systems Biology Initiative and Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139-4307, United States
| | | |
Collapse
|
17
|
|
18
|
Han W, Schulten K. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. J Am Chem Soc 2014; 136:12450-60. [PMID: 25134066 PMCID: PMC4156860 DOI: 10.1021/ja507002p] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A critical step of β-amyloid
fibril formation is fibril elongation
in which amyloid-β monomers undergo structural transitions to
fibrillar structures upon their binding to fibril tips. The atomic
detail of the structural transitions remains poorly understood. Computational
characterization of the structural transitions is limited so far to
short Aβ segments (5–10 aa) owing to the long time scale
of Aβ fibril elongation. To overcome the computational time
scale limit, we combined a hybrid-resolution model with umbrella sampling
and replica exchange molecular dynamics and performed altogether ∼1.3
ms of molecular dynamics simulations of fibril elongation for Aβ17–42. Kinetic network analysis of biased simulations
resulted in a kinetic model that encompasses all Aβ segments
essential for fibril formation. The model not only reproduces key
properties of fibril elongation measured in experiments, including
Aβ binding affinity, activation enthalpy of Aβ structural
transitions and a large time scale gap (τlock/τdock = 103–104) between Aβ
binding and its structural transitions, but also reveals detailed
pathways involving structural transitions not seen before, namely,
fibril formation both in hydrophobic regions L17-A21 and G37-A42 preceding
fibril formation in hydrophilic region E22-A30. Moreover, the model
identifies as important kinetic intermediates strand–loop–strand
(SLS) structures of Aβ monomers, long suspected to be related
to fibril elongation. The kinetic model suggests further that fibril
elongation arises faster at the fibril tip with exposed L17-A21, rather
than at the other tip, explaining thereby unidirectional fibril growth
observed previously in experiments.
Collapse
Affiliation(s)
- Wei Han
- Beckman Institute, ‡Center for Biophysics and Computational Biology, and §Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
19
|
Berhanu WM, Yaşar F, Hansmann UHE. In silico cross seeding of Aβ and amylin fibril-like oligomers. ACS Chem Neurosci 2013; 4:1488-500. [PMID: 24007594 DOI: 10.1021/cn400141x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent epidemiological data have shown that patients suffering from Type 2 Diabetes Mellitus have an increased risk to develop Alzheimer's disease and vice versa. A possible explanation is the cross-sequence interaction between Aβ and amylin. Because the resulting amyloid oligomers are difficult to probe in experiments, we investigate stability and conformational changes of Aβ-amylin heteroassemblies through molecular dynamics simulations. We find that Aβ is a good template for the growth of amylin and vice versa. We see water molecules permeate the β-strand-turn-β-strand motif pore of the oligomers, supporting a commonly accepted mechanism for toxicity of β-rich amyloid oligomers. Aiming for a better understanding of the physical mechanisms of cross-seeding and cell toxicity of amylin and Aβ aggregates, our simulations also allow us to identify targets for the rational design of inhibitors against toxic fibril-like oligomers of Aβ and amylin oligomers.
Collapse
Affiliation(s)
- Workalemahu M. Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Fatih Yaşar
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H. E. Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
20
|
Lockhart C, Klimov DK. Revealing Hidden Helix Propensity in Aβ Peptides by Molecular Dynamics Simulations. J Phys Chem B 2013; 117:12030-8. [DOI: 10.1021/jp407705j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Lockhart
- School
of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K. Klimov
- School
of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
21
|
Kahler A, Sticht H, Horn AHC. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study. PLoS One 2013; 8:e70521. [PMID: 23936224 PMCID: PMC3729696 DOI: 10.1371/journal.pone.0070521] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Amyloid-[Formula: see text] (A[Formula: see text]) oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.
Collapse
Affiliation(s)
- Anna Kahler
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anselm H. C. Horn
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
22
|
Qiang W, Kelley K, Tycko R. Polymorph-specific kinetics and thermodynamics of β-amyloid fibril growth. J Am Chem Soc 2013; 135:6860-71. [PMID: 23627695 DOI: 10.1021/ja311963f] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils formed by the 40-residue β-amyloid peptide (Aβ(1-40)) are highly polymorphic, with molecular structures that depend on the details of growth conditions. Underlying differences in physical properties are not well understood. Here, we investigate differences in growth kinetics and thermodynamic stabilities of two Aβ(1-40) fibril polymorphs for which detailed structural models are available from solid-state nuclear magnetic resonance (NMR) studies. Rates of seeded fibril elongation in the presence of excess soluble Aβ(1-40) and shrinkage in the absence of soluble Aβ(1-40) are determined with atomic force microscopy (AFM). From these rates, we derive polymorph-specific values for the soluble Aβ(1-40) concentration at quasi-equilibrium, from which relative stabilities can be derived. The AFM results are supported by direct measurements by ultraviolet absorbance, using a novel dialysis system to establish quasi-equilibrium. At 24 °C, the two polymorphs have significantly different elongation and shrinkage kinetics but similar thermodynamic stabilities. At 37 °C, differences in kinetics are reduced, and thermodynamic stabilities are increased significantly. Fibril length distributions in AFM images provide support for an intermittent growth model, in which fibrils switch randomly between an "on" state (capable of elongation) and an "off" state (incapable of elongation). We also monitor interconversion between polymorphs at 24 °C by solid-state NMR, showing that the two-fold symmetric "agitated" (A) polymorph is more stable than the three-fold symmetric "quiescent" (Q) polymorph. Finally, we show that the two polymorphs have significantly different rates of fragmentation in the presence of shear forces, a difference that helps explain the observed predominance of the A structure when fibrils are grown in agitated solutions.
Collapse
Affiliation(s)
- Wei Qiang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | | | | |
Collapse
|
23
|
Autiero I, Langella E, Saviano M. Insights into the mechanism of interaction between trehalose-conjugated beta-sheet breaker peptides and Aβ(1–42) fibrils by molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2013; 9:2835-41. [DOI: 10.1039/c3mb70235a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Berhanu WM, Hansmann UHE. Side-chain hydrophobicity and the stability of Aβ₁₆₋₂₂ aggregates. Protein Sci 2012; 21:1837-48. [PMID: 23015407 PMCID: PMC3575914 DOI: 10.1002/pro.2164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/06/2012] [Accepted: 09/14/2012] [Indexed: 11/05/2022]
Abstract
Recent mutagenesis studies using the hydrophobic segment of Aβ suggest that aromatic π-stacking interactions may not be critical for fibril formation. We have tested this conjecture by probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and 20, on the double-layer hexametric chains of Aβ fragment Aβ₁₆₋₂₂ using explicit solvent all-atom molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first evaluated the dynamic and stability dependence on various force fields of small amyloid aggregates. These initial investigations led us to choose AMBER99SB-ILDN as force field in multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild-type and mutants oligomers. Single-point and double-point mutants confirm that size and hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Aβ₁₆₋₂₂). This suggests as a venue for designing Aβ aggregation inhibitors the substitution of residues (especially, Phe 19 and 20) in the hydrophobic region (Aβ₁₆₋₂₂) with natural and non-natural amino acids of similar size and hydrophobicity.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry and Biochemistry, University of OklahomaNorman, Oklahoma 73019
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of OklahomaNorman, Oklahoma 73019
| |
Collapse
|
25
|
Kim S, Klimov DK. Binding to the lipid monolayer induces conformational transition in Aβ monomer. J Mol Model 2012; 19:737-50. [DOI: 10.1007/s00894-012-1596-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/03/2012] [Indexed: 12/11/2022]
|
26
|
Yu X, Wang Q, Lin Y, Zhao J, Zhao C, Zheng J. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6595-6605. [PMID: 22468636 DOI: 10.1021/la3002306] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils in solution and on the cell membrane has been linked to the pathogenesis of Alzheimer's disease. Although it is well-known that the presence of different surfaces can accelerate the aggregation of Aβ peptides into fibrils, surface-induced conformation, orientation, aggregation, and adsorption of Aβ peptides have not been well understood at the atomic level. Here, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the orientation change, conformational dynamics, surface interaction of small Aβ aggregates with different sizes (monomer to tetramer), and conformations (α-helix and β-hairpin) upon adsorption on the graphite surface, in comparison with Aβ structures in bulk solution. Simulation results show that hydrophobic graphite induces the quick adsorption of Aβ peptides regardless of their initial conformations and sizes. Upon the adsorption, Aβ prefers to adopt random structure for monomers and to remain β-rich-structure for small oligomers, but not helical structures. More importantly, due to the amphiphilic sequence of Aβ and the hydrophobic nature of graphite, hydrophobic C-terminal residues of higher-order Aβ oligomers appear to have preferential interactions with the graphite surface for facilitating Aβ fibril formation and fibril growth. In combination of atomic force microscopy (AFM) images and MD simulation results, a postulated mechanism is proposed to describe the structure and kinetics of Aβ aggregation from aqueous solution to the graphite surface, providing parallel insights into Aβ aggregation on biological cell membranes.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | |
Collapse
|
27
|
Berhanu WM, Hansmann UHE. Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One 2012; 7:e41479. [PMID: 22911797 PMCID: PMC3404032 DOI: 10.1371/journal.pone.0041479] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/21/2012] [Indexed: 11/23/2022] Open
Abstract
It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer's disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dynamics simulations and find that the segmental polymorphic models of Aβ retain a U-shaped architecture. Our results demonstrate the importance of inter-sheet side chain-side chain contacts, hydrophobic contacts among the strands (β1 and β2) and of salt bridges in stabilizing the aggregates. Residues in β-sheet regions have smaller fluctuation while those at the edge and loop region are more mobile. The inter-peptide salt bridges between Asp23 and Lys28 are strong compared to intra-chain salt bridge and there is an exchange of the inter-chain salt-bridge with intra-chain salt bridge. As our results suggest that Aβ exists under physiological conditions as an ensemble of distinct segmental polymorphs, it may be necessary to account in the development of therapeutics for Alzheimer's disease the differences in structural stability and aggregation behavior of the various Aβ polymorphic forms.
Collapse
Affiliation(s)
- Workalemahu M. Berhanu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lockhart C, Kim S, Kumar R, Klimov DK. Does amino acid sequence determine the properties of Aβ dimer? J Chem Phys 2011; 135:035103. [PMID: 21787025 DOI: 10.1063/1.3610427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of random reshuffling of amino acids on the properties of dimers formed by Aβ peptides is studied using replica exchange molecular dynamics and united atom implicit solvent model. We show that thermodynamics of dimer assembly and the dimer globule-like state are not affected by sequence permutation. Furthermore, sequence reshuffling does not change the distributions of non-local interactions and, to a large extent, amino acids in the dimer volume. To rationalize these results, we demonstrate that Gaussian statistics applies surprisingly well to the end-to-end distances of the peptides in the dimer implying that non-bonded interactions between distant along the chain amino acids are effectively screened. This observation suggests that peptides in the dimer behave as ideal chains in polymer melt, in which amino acids lose their "identity" and therefore the memory of sequence position. As a result large-scale properties of the dimer become universal or sequence independent. Comparison of our simulations with the prior theoretical studies and their implications for experiments are discussed.
Collapse
Affiliation(s)
- Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | |
Collapse
|
29
|
Kim S, Chang WE, Kumar R, Klimov DK. Naproxen interferes with the assembly of Aβ oligomers implicated in Alzheimer's disease. Biophys J 2011; 100:2024-32. [PMID: 21504739 DOI: 10.1016/j.bpj.2011.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/15/2011] [Accepted: 02/24/2011] [Indexed: 12/23/2022] Open
Abstract
Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer's disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Seongwon Kim
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | | | | |
Collapse
|
30
|
Côté S, Derreumaux P, Mousseau N. Distinct Morphologies for Amyloid Beta Protein Monomer: Aβ1–40, Aβ1–42, and Aβ1–40(D23N). J Chem Theory Comput 2011; 7:2584-92. [DOI: 10.1021/ct1006967] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sébastien Côté
- Département de Physique and Groupe de Recherche Sur Les Protéines Membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Institut Universitaire de France, Université Paris Diderot - Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche Sur Les Protéines Membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| |
Collapse
|
31
|
Berhanu WM, Masunov AE. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models. J Mol Model 2011; 18:1129-42. [PMID: 21674205 DOI: 10.1007/s00894-011-1123-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
Abstract
Insulin is a hormone that regulates the physiological glucose level in human blood. Insulin injections are used to treat diabetic patients. The amyloid aggregation of insulin may cause problems during the production, storage, and delivery of insulin formulations. Several modifications to the C-terminus of the B chain have been suggested in order to improve the insulin formulation. The central fragments of the A and B chains (LYQLENY and LVEALYL) have recently been identified as β-sheet-forming regions, and their microcrystalline structures have been used to build a high-resolution amyloid fibril model of insulin. Here we report on a molecular dynamics (MD) study of single-layer oligomers of the full-length insulin which aimed to identify the structural elements that are important for amyloid stability, and to suggest single glycine mutants in the β-sheet region that may improve the formulation. Structural stability, aggregation behavior and the thermodynamics of association were studied for the wild-type and mutant aggregates. A comparison of the oligomers of different sizes revealed that adding strands enhances the internal stability of the wild-type aggregates. We call this "dynamic cooperativity". The secondary structure content and clustering analysis of the MD trajectories show that the largest aggregates retain the fibril conformation, while the monomers and dimers lose their conformations. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as a possible explanation for the experimentally observed shortening of the nucleation lag phase of insulin with oligomer seeding. Decomposing the free energy into electrostatic, van der Waals and solvation components demonstrated that electrostatic interactions contribute unfavorably to the binding, while the van der Waals and especially solvation effects are favorable for it. A per-atom decomposition allowed us to identify the residues that contribute most to the binding free energy. Residues in the β-sheet regions of chains A and B were found to be the key residues as they provided the largest favorable contributions to single-layer association. The positive ∆∆G (mut) values of 37.3 to 1.4 kcal mol(-1) of the mutants in the β-sheet region indicate that they have a lower tendency to aggregate than the wild type. The information obtained by identifying the parts of insulin molecules that are crucial to aggregate formation and stability can be used to design new analogs that can better control the blood glucose level. The results of our simulation may help in the rational design of new insulin analogs with a decreased propensity for self-association, thus avoiding injection amyloidosis. They may also be used to design new fast-acting and delayed-release insulin formulations.
Collapse
Affiliation(s)
- Workalemahu Mikre Berhanu
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | | |
Collapse
|
32
|
Takeda T, Chang WE, Raman EP, Klimov DK. Binding of nonsteroidal anti-inflammatory drugs to Abeta fibril. Proteins 2011; 78:2849-60. [PMID: 20635343 DOI: 10.1002/prot.22804] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonsteroidal anti-inflammatory drugs are considered as potential therapeutic agents against Alzheimer's disease. Using replica exchange molecular dynamics and atomistic implicit solvent model, we studied the mechanisms of binding of naproxen and ibuprofen to the Abeta fibril derived from solid-state NMR measurements. The binding temperature of naproxen is found to be almost 40 K higher than of ibuprofen implicating higher binding affinity of naproxen. The key factor, which enhances naproxen binding, is strong interactions between ligands bound to the surface of the fibril. The naphthalene ring in naproxen appears to provide a dominant contribution to ligand-ligand interactions. In contrast, ligand-fibril interactions cannot explain differences in the binding affinities of naproxen and ibuprofen. The concave fibril edge with the groove is identified as the primary binding location for both ligands. We show that confinement of the ligands to the groove facilitates ligand-ligand interactions that lowers the energy of the ligands bound to the concave edge compared with those bound to the convex edge. Our simulations appear to provide microscopic rationale for the differing binding affinities of naproxen and ibuprofen observed experimentally.
Collapse
Affiliation(s)
- Takako Takeda
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | |
Collapse
|
33
|
Kim S, Takeda T, Klimov DK. Mapping conformational ensembles of aβ oligomers in molecular dynamics simulations. Biophys J 2011; 99:1949-58. [PMID: 20858441 DOI: 10.1016/j.bpj.2010.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/27/2010] [Accepted: 07/07/2010] [Indexed: 11/30/2022] Open
Abstract
Although the oligomers formed by Aβ peptides appear to be the primary cytotoxic species in Alzheimer's disease, detailed information about their structures appears to be lacking. In this article, we use exhaustive replica exchange molecular dynamics and an implicit solvent united-atom model to study the structural properties of Aβ monomers, dimers, and tetramers. Our analysis suggests that the conformational ensembles of Aβ dimers and tetramers are very similar, but sharply distinct from those sampled by the monomers. The key conformational difference between monomers and oligomers is the formation of β-structure in the oligomers occurring together with the loss of intrapeptide interactions and helix structure. Our simulations indicate that, independent of oligomer order, the Aβ aggregation interface is largely confined to the sequence region 10-23, which forms the bulk of interpeptide interactions. We show that the fractions of β structure computed in our simulations and measured experimentally are in good agreement.
Collapse
Affiliation(s)
- Seongwon Kim
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, USA
| | | | | |
Collapse
|
34
|
Takeda T, Kumar R, Raman EP, Klimov DK. Nonsteroidal anti-inflammatory drug naproxen destabilizes Aβ amyloid fibrils: a molecular dynamics investigation. J Phys Chem B 2010; 114:15394-402. [PMID: 20979356 PMCID: PMC3034367 DOI: 10.1021/jp107955v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using implicit solvent model and replica exchange molecular dynamics, we examine the propensity of a nonsteroidal anti-inflammatory drug, naproxen, to interfere with Aβ fibril growth. We also compare the antiaggregation propensity of naproxen with that of ibuprofen. Naproxen's antiaggregation effect is influenced by two factors. Similar to ibuprofen, naproxen destabilizes binding of incoming Aβ peptides to the fibril due to direct competition between the ligands and the peptides for the same binding location on the fibril surface (the edge). However, in contrast to ibuprofen, naproxen binding also alters the conformational ensemble of Aβ monomers by promoting β-structure. The second factor weakens naproxen's antiaggregation effect. These findings appear to explain the experimental observations, in which naproxen binds to the Aβ fibril with higher affinity than ibuprofen, yet produces weaker antiaggregation action.
Collapse
Affiliation(s)
- Takako Takeda
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110
| | - Rashmi Kumar
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110
| | - E. Prabhu Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Dmitri K. Klimov
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110
| |
Collapse
|
35
|
Yu X, Wang Q, Zheng J. Structural determination of Abeta25-35 micelles by molecular dynamics simulations. Biophys J 2010; 99:666-74. [PMID: 20643087 DOI: 10.1016/j.bpj.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022] Open
Abstract
Amyloid-beta (Abeta) peptides and other amyloidogenic proteins can form a wide range of soluble oligomers of varied morphologies at the early aggregation stage, and some of these oligomers are biologically relevant to the pathogenesis of Alzheimer's disease. Spherical micelle-like oligomers have been often observed for many different types of amyloids. Here, we report a hybrid computational approach to systematically construct, search, optimize, and rank soluble micelle-like Abeta25-35 structures with different side-chain packings at the atomic level. Simulations reveal for the first time, to our knowledge, that two Abeta micelles with antiparallel peptide organization and distinct surface hydrophobicity display high structural stability. Stable micelles experience a slow secondary structural transition from turn to alpha-helix. Energetic analysis coupled with computational mutagenesis reveals that van der Waals and solvation energies play a more pronounced role in stabilizing the micelles, whereas the electrostatic energies present a stable but minor energetic contribution to peptide assemblies. Modeled Abeta micelles with shapes and dimensions similar to those of experimentally derived spherical structures also provide detailed information about the roles of structural dynamics and transition in the formation of amyloid fibrils. The strong binding affinity of our micelles to antibodies implies that micelles may be a biologically relevant species.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, USA
| | | | | |
Collapse
|
36
|
Chang WE, Takeda T, Raman EP, Klimov DK. Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Biophys J 2010; 98:2662-70. [PMID: 20513411 DOI: 10.1016/j.bpj.2010.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 12/25/2022] Open
Abstract
Using implicit solvent molecular dynamics and replica exchange simulations, we study the impact of ibuprofen on the growth of wild-type Abeta fibrils. We show that binding of ibuprofen to Abeta destabilizes the interactions between incoming peptides and the fibril. As a result, ibuprofen interference modifies the free energy landscape of fibril growth and reduces the free energy gain of Abeta peptide binding to the fibril by approximately 2.5 RT at 360 K. Furthermore, ibuprofen interactions shift the thermodynamic equilibrium from fibril-like locked states to disordered docked states. Ibuprofen's anti-aggregation effect is explained by its competition with incoming Abeta peptides for the same binding site located on the fibril edge. Although ibuprofen impedes fibril growth, it does not significantly change the mechanism of fibril elongation or the structure of Abeta peptides bound to the fibril.
Collapse
Affiliation(s)
- Wenling E Chang
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, USA
| | | | | | | |
Collapse
|
37
|
Wallace JA, Shen JK. Probing the strand orientation and registry alignment in the propagation of amyloid fibrils. Biochemistry 2010; 49:5290-8. [PMID: 20491446 DOI: 10.1021/bi100137y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed knowledge of the structure and growth mechanism of amyloid fibrils is important for understanding the disease process. Recently, solid-state NMR and other spectroscopic data have revealed the equilibrium organization of the tertiary structure of fibrils formed by various segments of beta-amyloid peptides. A three-step "dock-and-lock" mechanism for fibril growth has been proposed on the basis of the kinetic data. Here we use all-atom replica-exchange molecular dynamics simulations in generalized-Born implicit solvent to probe the mechanism of tertiary structure propagation in fibrils of Abeta(16-22) modeled as an oligomer consisting of two beta-sheets each having four strands. The data show that following association with the oligomer, but before being fully locked onto the existing beta-sheet, the added monomer predominantly samples states with the antiparallel strand orientation, but both in- and one-residue shifted backbone hydrogen bond alignments. The in-register state, which is the experimentally observed equilibrium alignment, is marginally more stable than the registry-shifted one. These results suggest that, following the fast docking step, the added monomer dynamically slides in the backbone registry, and stabilization of the preferential alignment must occur in the second locking step as the monomer becomes fully integrated with the fibril. We also delineate the electrostatic and hydrophobic effects in directing the registry alignment during monomer addition. Surprisingly, the in-register alignment provides both increased cross-strand electrostatic attraction and hydrophobic surface burial. Finally, our data support the notion that side chain hydrophobic burial is a major driving force for beta-sheet assembly.
Collapse
Affiliation(s)
- Jason A Wallace
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | |
Collapse
|
38
|
Takeda T, Klimov DK. Computational backbone mutagenesis of Abeta peptides: probing the role of backbone hydrogen bonds in aggregation. J Phys Chem B 2010; 114:4755-62. [PMID: 20302321 DOI: 10.1021/jp911533q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using replica exchange molecular dynamics (REMD) and united atom implicit solvent model we examine the role of backbone hydrogen bonds (HBs) in Abeta aggregation. The importance of HBs appears to depend on the aggregation stage. The backbone HBs have little effect on the stability of Abeta dimers or on their aggregation interface. The HBs also do not play a critical role in initial binding of Abeta peptides to the amyloid fibril. Their elimination does not change the continuous character of Abeta binding nor its temperature. However, cancellation of HBs forming between incoming Abeta peptides and the fibril disrupts the locked fibril-like states in the bound peptides. Without the support of HBs, bound Abeta peptides form few long beta-strands on the fibril edge. As a result, the deletion of peptide-fibril HBs is expected to impede fibril growth. As for the peptides bound to Abeta fibril the deletion of interpeptide HBs reduces the beta propensity in the dimers making them less competent for amyloid assembly. These simulation findings together with the backbone mutagenesis experiments suggest that a viable strategy for arresting fibril growth is the disruption of interpeptide HBs.
Collapse
Affiliation(s)
- Takako Takeda
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia 20110, USA
| | | |
Collapse
|
39
|
Kim S, Takeda T, Klimov DK. Globular state in the oligomers formed by Abeta peptides. J Chem Phys 2010; 132:225101. [PMID: 20550420 PMCID: PMC2896418 DOI: 10.1063/1.3447894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/14/2010] [Indexed: 01/04/2023] Open
Abstract
Replica exchange molecular dynamics and implicit solvent model are used to study two oligomeric species of Abeta peptides, dimer and tetramer, which are typically observed in in vitro experiments. Based on the analysis of free energy landscapes, density distributions, and chain flexibility, we propose that the oligomer formation is a continuous transition occurring without metastable states. The density distribution computations suggest that Abeta oligomer consists of two volume regions-the core with fairly flat density profile and the surface layer with rapidly decreasing density. The core is mostly formed by the N-terminal residues, whereas the C-terminal tends to occur in the surface layer. Lowering the temperature results in the redistribution of peptide atoms from the surface layer into the core. Using these findings, we argue that Abeta oligomer resembles polymer globule in poor solvent. Abeta dimers and tetramers are found to be structurally similar suggesting that the conformations of Abeta peptides do not depend on the order of small oligomers.
Collapse
Affiliation(s)
- Seongwon Kim
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia 20110, USA
| | | | | |
Collapse
|
40
|
Lemkul JA, Bevan DR. Destabilizing Alzheimer's Abeta(42) protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 2010; 49:3935-46. [PMID: 20369844 DOI: 10.1021/bi1000855] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease is a progressive, neurodegenerative disorder that is the leading cause of senile dementia, afflicting millions of individuals worldwide. Since the identification of the amyloid beta-peptide (Abeta) as the principal toxic entity in the progression of Alzheimer's disease, numerous attempts have been made to reduce endogenous Abeta production and deposition, including designing inhibitors of the proteases that generate the peptide, generating antibodies against Abeta aggregates, utilizing metal chelators, and identifying small molecules that target the peptide during the aggregation pathway. The last approach is particularly attractive, as Abeta is normally present in vivo, but aggregation is a purely pathological event. Studies conducted in vitro and in vivo have suggested that administration of flavonoids, compounds naturally present in many foods, including wine and tea, can prevent and reverse Abeta aggregation, but mechanistic details are lacking. In this work, we employ atomistic, explicit-solvent molecular dynamics (MD) simulations to identify the mechanism of Abeta fibril destabilization by morin, one of the most effective anti-aggregation flavonoids, using a model of the mature Abeta fibril. Through the course of 24 simulations totaling 4.3 mus, we find that morin can bind to the ends of the fibrils to block the attachment of an incoming peptide and can penetrate into the hydrophobic core to disrupt the Asp23-Lys28 salt bridges and interfere with backbone hydrogen bonding. The combination of hydrophobicity, aromaticity, and hydrogen bonding capacity of morin imparts the observed behavior.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Biochemistry, 111 Engel Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA
| | | |
Collapse
|
41
|
Horn AHC, Sticht H. Amyloid-beta42 oligomer structures from fibrils: a systematic molecular dynamics study. J Phys Chem B 2010; 114:2219-26. [PMID: 20104925 DOI: 10.1021/jp100023q] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent experimental data demonstrate that small, soluble amyloid-beta42 oligomers play an important role in Alzheimer's disease because they exhibit neurotoxic properties and also act as seed for fibril growth. We performed all-atom molecular dynamics simulations in explicit solvent of 0.7 micros in total on five Abeta9-42 oligomers (monomer through pentamer) starting from the fibril conformation. The initial conformation proves to be stable in the trimer to pentamer, and the two parallel in-register beta-sheets as well as the connecting turn are preserved. The dimer undergoes larger conformational changes in its C-terminus, and the predominant conformation detected exhibits an additional antiparallel beta-sheet in one of the subunits. This conformational rearrangement allows efficient shielding of hydrophobic residues from the solvent, which is not possible for a dimer in the fibril conformation. In addition to the presence of the hydrogen bonds in the beta-sheets, the larger oligomers are stabilized by interchain D23-K28 salt bridges, whereas a D23-N27 interaction is found in the dimer. The degree of structural similarity to the fibril conformation detected for the oligomers in the simulation may also offer a structural explanation for the experimental finding that trimers and tetramers act as more potent seeds in fibril formation than dimers because only small conformational changes will be required for fibril growth. The fact that the dimer predominantly exists in conformations distinct from the larger oligomers and the fibril is also interesting for the design of anti-Alzheimer drugs, because it suggests that multiple drugs might be required to target the structurally different neurotoxic oligomers.
Collapse
Affiliation(s)
- Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
42
|
Zheng J, Yu X, Wang J, Yang JC, Wang Q. Molecular modeling of two distinct triangular oligomers in amyloid beta-protein. J Phys Chem B 2010; 114:463-70. [PMID: 20014755 DOI: 10.1021/jp907608s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-beta (Abeta) peptides exhibit many distinct structural morphology at the early aggregate stage, some of which are biological relevant to the pathogenesis of Alzheimer's disease (AD). Atomic-resolution structures of the early Abeta aggregates and their conformational changes in amyloid aggregation remain elusive. Here, we perform all-atom molecular modeling and dynamics simulations to obtain two stable triangular-like Abeta structures with the lowest packing energy, one corresponding to the Tycko's model (Paravastu, A.; Leapman, R.; Yau, W.; Tycko, R. Proc. Nat. Acad. Soc. U.S.A. 2008, 105, 18349-18354) (referred to C-WT model) and the other corresponding to computational model (N-WT model). Both models have the same 3-fold symmetry but distinct beta-sheet organizations in which three Abeta hexamers pack together via either C-terminal beta-strand residues or N-terminal beta-strand residues forming distinct hydrophobic cross section. Structural and energetic comparisons of two 3-fold Abeta oligomers, coupled with structural changes upon the mutations occurring at the interacting interfaces, reveal that although hydrophobic interactions are still dominant forces, electrostatic interactions are more favorable in the N-WT model due to the formation of more and stable intersheet salt bridges, while solvation energy is more favorable in the C-WT model due to more exposed hydrophilic residues to solvent. Both models display many common features similar to other amyloid oligomers and therefore are likely to be biologically relevant.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | |
Collapse
|
43
|
Lemkul JA, Bevan DR. Assessing the Stability of Alzheimer’s Amyloid Protofibrils Using Molecular Dynamics. J Phys Chem B 2010; 114:1652-60. [DOI: 10.1021/jp9110794] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, 111 Engel Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
| | - David R. Bevan
- Department of Biochemistry, 111 Engel Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
| |
Collapse
|
44
|
Molecular dynamics simulations of Ibuprofen binding to Abeta peptides. Biophys J 2009; 97:2070-9. [PMID: 19804739 DOI: 10.1016/j.bpj.2009.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/14/2009] [Accepted: 07/22/2009] [Indexed: 01/02/2023] Open
Abstract
Using replica exchange molecular dynamics simulations and the implicit solvent model we probed binding of ibuprofen to Abeta(10-40) monomers and amyloid fibrils. We found that the concave (CV) fibril edge has significantly higher binding affinity for ibuprofen than the convex edge. Furthermore, binding of ibuprofen to Abeta monomers, as compared to fibrils, results in a smaller free energy gain. The difference in binding free energies is likely to be related to the presence of the groove on the CV fibril edge, in which ibuprofen tends to accumulate. The confinement effect of the groove promotes the formation of large low-energy ibuprofen clusters, which rarely occur on the surface of Abeta monomers. These observations led us to suggest that the ibuprofen binding mechanism for Abeta fibrils is different from that for monomers. In general, ibuprofen shows a preference to bind to those regions of Abeta monomers (amino terminal) and fibrils (the CV edge) that are also the primary aggregation interfaces. Based on our findings and on available experimental data, we propose a rationale for the ibuprofen antiaggregation effect.
Collapse
|
45
|
Takeda T, Klimov DK. Side chain interactions can impede amyloid fibril growth: replica exchange simulations of Abeta peptide mutant. J Phys Chem B 2009; 113:11848-57. [PMID: 19708712 PMCID: PMC2765228 DOI: 10.1021/jp904070w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using replica exchange molecular dynamics, we study the effect of Asp23Tyr mutation on Abeta(10-40) fibril growth. The effect of this mutation is revealed through the computation of free energy landscapes, the distributions of peptide-fibril interactions, and by comparison with the wild-type Abeta(10-40) peptide. Asp23Tyr mutation has a relatively minor influence on the docking of Abeta peptides to the fibril. However, it has a strong impact on the locking stage due to profound stabilization of the parallel in-registry beta-sheets formed by the peptides on the fibril edge. The enhanced stability of parallel beta-sheets results from the deletion of side chain interactions formed by Asp23, which are incompatible with the fibril-like conformers. Consequently, Asp23Tyr mutation is expected to promote fibril growth. We argue that strong off-registry side chain interactions may slow down fibril assembly as it occurs for the wild-type Abeta peptide. The analysis of experimental data offers support to our in silico conclusions.
Collapse
Affiliation(s)
- Takako Takeda
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110
| | - Dmitri K. Klimov
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110
| |
Collapse
|