1
|
Nakashima K, Georgiev A, Yordanov D, Matsushima Y, Hirashima SI, Miura T, Antonov L. Solvent-Triggered Long-Range Proton Transport in 7-Hydroxyquinoline Using a Sulfonamide Transporter Group. J Org Chem 2022; 87:6794-6806. [PMID: 35512011 DOI: 10.1021/acs.joc.2c00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability of long-range proton transport by substitution of 7-hydroxyquinoline at the eighth position with sulfonamide and sulfonylhydrazone rotor units to act as a crane-arm has been studied. Different proton transport pathways triggered by different stimuli have been established depending on the structure of the crane-arms. Solvent-driven proton switching from OH to the quinoline nitrogen (Nquin) site, facilitated by a sulfonamide transporter group in polar protic and aprotic solvents, has been confirmed by optical (absorption and fluorescence) and NMR spectroscopies as well as by single-crystal X-ray structure analysis. Photoinduced long-range proton transport to the Nquin site upon 340 nm UV light irradiation has been estimated in sulfonylhydrazone, which is not sensitive to solvent-driven switching. Both compounds have exhibited acid-triggered switching by trifluoroacetic acid due to the formation of a stable six-membered intramolecular hydrogen bonding interaction between the protonated Nquin and crane-arm. The structures of acid-switched form were confirmed by NMR spectroscopy and single-crystal X-ray structure analysis. The behavior of the compounds suggests a big step forward in the advanced proton pump-switching architecture because they cover three distinct driving forces in the switching process: solvent, light, and acid.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Anton Georgiev
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Boulevard, 1756 Sofia, Bulgaria.,Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard, 1784 Sofia, Bulgaria.,Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Avenue, Building 109, 1113 Sofia, Bulgaria
| | - Dancho Yordanov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard, 1784 Sofia, Bulgaria.,Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Avenue, Building 9, Sofia 1113, Bulgaria
| | - Yasuyuki Matsushima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Liudmil Antonov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Boulevard, 1756 Sofia, Bulgaria.,Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard, 1784 Sofia, Bulgaria
| |
Collapse
|