1
|
Vollmers L, Zacharias M. Advanced sampling simulations of coupled folding and binding of phage P22 N-peptide to boxB RNA. Biophys J 2024; 123:3463-3477. [PMID: 39210596 PMCID: PMC11480772 DOI: 10.1016/j.bpj.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Protein-RNA interactions are crucially important for numerous cellular processes and often involve coupled folding and binding of peptide segments upon association. The Nut-utilization site (N)-protein of bacteriophages contains an N-terminal arginine-rich motif that undergoes such a folding transition upon binding to the boxB RNA hairpin loop target structure. Molecular dynamics free energy simulations were used to calculate the absolute binding free energy of the N-peptide of bacteriophage P22 in complex with the boxB RNA hairpin motif at different salt concentrations and using two different water force field models. We obtained good agreement with experiment also at different salt concentrations for the TIP4P-D water model that has a stabilizing effect on unfolded protein structures. It allowed us to estimate the free energy contribution resulting from restricting the molecules' spatial and conformational freedom upon binding, which makes a large opposing contribution to binding. In a second set of umbrella sampling simulations to dissociate/associate the complex along a separation coordinate, we analyzed the onset of preorientation of the N-peptide and onset of structure formation relative to the RNA and its dependence on the salt concentration. Peptide orientation and conformational transitions are significantly coupled to the first contact formation between peptide and RNA. The initial contacts are mostly formed between peptide residues and the boxB hairpin loop nucleotides. A complete transition to an α-helical bound peptide conformation occurs only at a late stage of the binding process a few angstroms before the complexed state has been reached. However, the N-peptide orients also at distances beyond the contact distance such that the sizable positive charge points toward the RNA's center-of-mass. Our result may have important implications for understanding protein- and peptide-RNA complex formation frequently involving coupled folding and association processes.
Collapse
Affiliation(s)
- Luis Vollmers
- Physics Department and Center of Protein Assemblies, Technical University Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University Munich, Garching, Germany.
| |
Collapse
|
2
|
Kienlein M, Zacharias M. How arginine inhibits substrate-binding domain 2 elucidated using molecular dynamics simulations. Protein Sci 2024; 33:e5077. [PMID: 38888275 PMCID: PMC11184577 DOI: 10.1002/pro.5077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The substrate-binding domain 2 (SBD2) is an important part of the bacterial glutamine (GLN) transporter and mediates binding and delivery of GLN to the transporter translocation subunit. The SBD2 consists of two domains, D1 and D2, that bind GLN in the space between domains in a closed structure. In the absence of ligand, the SBD2 adopts an open conformation with larger space between domains. The GLN binding and closing are essential for the subsequent transport into the cell. Arginine (ARG) can also bind to SBD2 but does not induce closing and inhibits GLN transport. We use atomistic molecular dynamics (MD) simulations in explicit solvent to study ARG binding in the presence of the open SBD2 structure and observed reversible binding to the native GLN binding site with similar contacts but no transition to a closed SBD2 state. Absolute binding free energy simulations predict a considerable binding affinity of ARG and GLN to the binding site on the D1 domain. Free energy simulations to induce subsequent closing revealed a strong free energy penalty in case of ARG binding in contrast to GLN binding that favors the closed SBD2 state but still retains a free energy barrier for closing. The simulations allowed the identification of the molecular origin of the closing penalty in case of bound ARG and suggested a mutation of lysine at position 373 to alanine that strongly reduced the penalty and allowed closing even in the presence of bound ARG. The study offers an explanation of the molecular mechanism of how ARG competitively inhibits GLN from binding to SBD2 and from triggering the transition to a closed conformation. The proposed Lys373Ala mutation shows promise as a potential tool to validate whether a conformational mismatch between open SBD2 and the translocator is responsible for preventing ARG uptake to the cell.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| |
Collapse
|
3
|
Matoušková E, Dršata T, Pfeifferová L, Šponer J, Réblová K, Lankaš F. RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems. Biophys J 2022; 121:705-714. [PMID: 35122735 PMCID: PMC8943727 DOI: 10.1016/j.bpj.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022] Open
Abstract
Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.
Collapse
Affiliation(s)
- Eva Matoušková
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Pfeifferová
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Centre of Molecular Biology and Genetics, University Hospital Brno, Czech Republic.
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
4
|
Capponi S, Wang S, Navarro EJ, Bianco S. AI-driven prediction of SARS-CoV-2 variant binding trends from atomistic simulations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:123. [PMID: 34613523 PMCID: PMC8493367 DOI: 10.1140/epje/s10189-021-00119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/24/2021] [Indexed: 05/02/2023]
Abstract
We present a novel technique to predict binding affinity trends between two molecules from atomistic molecular dynamics simulations. The technique uses a neural network algorithm applied to a series of images encoding the distance between two molecules in time. We demonstrate that our algorithm is capable of separating with high accuracy non-hydrophobic mutations with low binding affinity from those with high binding affinity. Moreover, we show high accuracy in prediction using a small subset of the simulation, therefore requiring a much shorter simulation time. We apply our algorithm to the binding between several variants of the SARS-CoV-2 spike protein and the human receptor ACE2.
Collapse
Affiliation(s)
- Sara Capponi
- IBM Almaden Research Center, 650 Harry Rd, San Jose, CA, 95120, USA
- Center for Cellular Construction, San Francisco, CA, 94158, USA
| | - Shangying Wang
- IBM Almaden Research Center, 650 Harry Rd, San Jose, CA, 95120, USA
- Center for Cellular Construction, San Francisco, CA, 94158, USA
| | - Erik J Navarro
- IBM Almaden Research Center, 650 Harry Rd, San Jose, CA, 95120, USA
- Center for Cellular Construction, San Francisco, CA, 94158, USA
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Simone Bianco
- IBM Almaden Research Center, 650 Harry Rd, San Jose, CA, 95120, USA.
- Center for Cellular Construction, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Chen SY, Zacharias M. How Mutations Perturb γ-Secretase Active Site Studied by Free Energy Simulations. ACS Chem Neurosci 2020; 11:3321-3332. [PMID: 32960571 DOI: 10.1021/acschemneuro.0c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is involved in processing of the amyloid precursor protein (APP) and generation of short Aβ peptides that may play a key role in neurodegenerative diseases such as Alzheimer's disease (AD). Several mutations in γ-secretase influence its activity, resulting in early AD onset (Familial AD or FAD mutations). The molecular details of how mutations, not located close to the active site, can affect enzyme activity is not understood. In molecular dynamics simulations of γ-secretase in the absence of substrate (apo), we identified two active site conformational states characterized by a direct contact between catalytic Asp residues (closed state) and an open water-bridged state. In the presence of substrate, only conformations compatible with the open active site geometry are accessible. Systematic free energy simulations on wild type and FAD mutations indicate a free energy difference between closed and open states that is significantly modulated by FAD mutations and correlates with the corresponding experimental activity. For mutations with reduced activity, an increased penalty for open-state transitions was found. Only for two mutations located at the active site a direct perturbation of the open-state geometry was observed that could directly explain the drop of enzyme activity. The simulations suggest that modulation of the closed/open equilibrium and perturbation of the open (active) catalytic geometry are possible mechanisms of how FAD mutations affect γ-secretase activity. The results also offer an explanation for the experimental finding that FAD mutations, although not located at the interface to the substrate, mainly destabilize the enzyme-substrate complex.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physik-Department T38,Techniche Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physik-Department T38,Techniche Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| |
Collapse
|
6
|
Kienlein M, Zacharias M. Ligand binding and global adaptation of the GlnPQ substrate binding domain 2 revealed by molecular dynamics simulations. Protein Sci 2020; 29:2482-2494. [PMID: 33070437 PMCID: PMC7679957 DOI: 10.1002/pro.3981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/06/2023]
Abstract
Substrate-binding domains (SBD) are important structural elements of substrate transporters mediating the transport of essential molecules across the cell membrane. The SBD2 domain of the glutamine (GLN) transporter from bacteria consists of two domains D1 and D2 that bind GLN in the space between the domains in a closed conformation. In the absence of ligand, SBD2 adopts an open conformation with increased domain distance. In molecular dynamics (MD) simulations in the absence of ligands, no closing of the open conformation was observed on the MD time scale. Addition of GLN resulted in several reversible binding and unbinding events of GLN at the binding site on the D1 domain but did not induce domain closing indicating that binding and global domain closing do not occur simultaneously. The SBD2 structure remained in a closed state when starting from the GLN-bound closed crystal structure and opened quickly to reach the open state upon removal of the GLN ligand. Free energy simulations to induce opening to closing indicated a barrier for closing in the absence and presence of ligand and a significant penalty for closing without GLN in the binding pocket. Simulations of a Leu480Ala mutation also indicate that an interaction of a C-terminal D1-tail471-484 with a D2-helix418-427 (not contacting the substrate-binding region) plays a decisive role for controlling the barrier of conformational switching in the SBD2 protein. The results allow us to derive a model of the molecular mechanism of substrate binding to SBD2 and associated conformational changes.
Collapse
Affiliation(s)
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, Garching, Germany
| |
Collapse
|
7
|
Zhang H, Zhang H, Chen C. Simulation Study of the Plasticity of k-Turn Motif in Different Environments. Biophys J 2020; 119:1416-1426. [PMID: 32918889 DOI: 10.1016/j.bpj.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022] Open
Abstract
The k-turn is a widespread and important motif in RNA. According to the internal hydrogen bond network, it has two stable states, called N1 and N3. The relative stability between the states changes with the environment. It is able to accept different conformations in different environments. This is called the "plasticity" of a molecule. In this work, we study the plasticity of k-turn by the mixing REMD method in explicit solvent. The results are concluded as follows. First, N1 and N3 are almost equally stable when k-turn is in the solvent alone. The molecule is quite flexible as a hinge. However, after binding to different proteins, such as the proteins L7Ae and L24e, k-turn falls into one global minimum. The preferred state could be either N1 or N3. On the contrary, the other nonpreferred state becomes unstable with a weaker binding affinity to the protein. It reveals that RNA-binding protein is able to modulate the representative state of k-turn at equilibrium. This is in agreement with the findings in experiments. Moreover, free energy calculations show that the free energy barrier between the N1 and N3 states of k-turn increases in the complexes. The state-to-state transition is greatly impeded. We also give a deep discussion on the mechanism of the high plasticity of k-turn in different environments.
Collapse
Affiliation(s)
- Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Siebenmorgen T, Zacharias M. Computational prediction of protein–protein binding affinities. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1448] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Till Siebenmorgen
- Physics Department T38 Technical University of Munich Garching Germany
| | - Martin Zacharias
- Physics Department T38 Technical University of Munich Garching Germany
| |
Collapse
|
9
|
Siebenmorgen T, Zacharias M. Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations. J Chem Theory Comput 2019; 15:2071-2086. [PMID: 30698954 DOI: 10.1021/acs.jctc.8b01022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate prediction of protein-protein complex geometries is of major importance to ultimately model the complete interactome of interacting proteins in a cell. A major bottleneck is the realistic free energy evaluation of predicted docked structures. Typically, simple scoring functions applied to single-complex structures are employed that neglect conformational entropy and often solvent effects completely. The binding free energy of a predicted protein-protein complex can, however, be calculated using umbrella sampling (US) along a predefined dissociation/association coordinate of a complex. We employed atomistic US-molecular dynamics simulations including appropriate conformational and axial restraints and an implicit generalized Born solvent model to calculate binding free energies of a large set of docked decoys for 20 different complexes. Free energies associated with the restraints were calculated separately. In principle, the approach includes all energetic and entropic contributions to the binding process. The evaluation of docked complexes based on binding free energy calculation was in better agreement with experiment compared to a simple scoring based on energy minimization or MD refinement using exactly the same force field description. Even calculated absolute binding free energies of structures close to the native binding geometry showed a reasonable correlation to experiment. However, still for a number of complexes docked decoys of lower free energy than near-native geometries were found indicating inaccuracies in the force field or the implicit solvent model. Although time consuming the approach may open up a new route for realistic ranking of predicted geometries based on calculated free energy of binding.
Collapse
Affiliation(s)
- Till Siebenmorgen
- Physik-Department T38 , Technische Universität München , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Martin Zacharias
- Physik-Department T38 , Technische Universität München , James-Franck-Strasse 1 , 85748 Garching , Germany
| |
Collapse
|
10
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
11
|
Tian Z, Chu Y, Wang H, Zhong L, Deng M, Li W. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors. RSC Adv 2018; 8:1055-1064. [PMID: 35538960 PMCID: PMC9076956 DOI: 10.1039/c7ra12173c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Microtubules are a favorable target for development of anticancer agents. In this study, the anti-proliferative activities of plinabulin and six diketopiperazine derivatives were evaluated against human lung cancer cell line NCI-H460 and human pancreatic cancer cell line BxPC-3. The inhibition activities on these microtubules were assessed by tubulin polymerization and immunofluorescence assays. To gain insight into the interaction mechanism of the derivatives and tubulin, a molecular dynamics simulation was performed. We discovered that the diketopiperazine derivatives could prevent tubulin assembly through conformational changes. Molecular Mechanics/Poisson–Boltzmann Surface Area (MM-PBSA) calculations showed that the trend of the binding free energies of these inhibitors was in agreement with the trend of their biological activities. Introducing hydrophobic groups into the A-ring was favorable for binding. Energy decomposition indicated that van der Waals interaction played an essential role in the binding affinity of tubulin polymerization inhibitors. In addition, the key residues responsible for inhibitor binding were identified. In summary, this study provided valuable information for development of novel tubulin polymerization inhibitors as anticancer agents. Microtubules are a favorable target for development of anticancer agents.![]()
Collapse
Affiliation(s)
- Zhenhua Tian
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- China
| | - Yanyan Chu
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- China
- Marine Biomedical Research Institute of Qingdao
| | - Hui Wang
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- China
| | - Lili Zhong
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- China
| | - Mengyan Deng
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- China
| | - Wenbao Li
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- China
- Innovation Center for Marine Drug Screening and Evaluation
| |
Collapse
|
12
|
Dršata T, Réblová K, Beššeová I, Šponer J, Lankaš F. rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif. J Chem Theory Comput 2017; 13:3359-3371. [DOI: 10.1021/acs.jctc.7b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomáš Dršata
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Filip Lankaš
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Laboratory
of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
13
|
Luitz M, Bomblies R, Ostermeir K, Zacharias M. Exploring biomolecular dynamics and interactions using advanced sampling methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:323101. [PMID: 26194626 DOI: 10.1088/0953-8984/27/32/323101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecular dynamics (MD) and Monte Carlo (MC) simulations have emerged as a valuable tool to investigate statistical mechanics and kinetics of biomolecules and synthetic soft matter materials. However, major limitations for routine applications are due to the accuracy of the molecular mechanics force field and due to the maximum simulation time that can be achieved in current simulations studies. For improving the sampling a number of advanced sampling approaches have been designed in recent years. In particular, variants of the parallel tempering replica-exchange methodology are widely used in many simulation studies. Recent methodological advancements and a discussion of specific aims and advantages are given. This includes improved free energy simulation approaches and conformational search applications.
Collapse
Affiliation(s)
- Manuel Luitz
- Physik-Department T38, Technische Universität München, James Franck Str. 1, 85748 Garching, Germany
| | | | | | | |
Collapse
|
14
|
Karilainen T, Timr Š, Vattulainen I, Jungwirth P. Oxidation of Cholesterol Does Not Alter Significantly Its Uptake into High-Density Lipoprotein Particles. J Phys Chem B 2015; 119:4594-600. [DOI: 10.1021/acs.jpcb.5b00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Topi Karilainen
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Štěpán Timr
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstı́ 2, 16610 Prague 6, Czech Republic
| | - Ilpo Vattulainen
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- MEMPHYS -
Center
for Biomembrane Physics, University of Southern Denmark, DK-5230, Odense, Denmark
| | - Pavel Jungwirth
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstı́ 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
15
|
Ye W, Yang J, Yu Q, Wang W, Hancy J, Luo R, Chen HF. Kink turn sRNA folding upon L7Ae binding using molecular dynamics simulations. Phys Chem Chem Phys 2014; 15:18510-22. [PMID: 24072031 DOI: 10.1039/c3cp53145g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kink-turn sRNA motif in archaea, whose combination with protein L7Ae initializes the assembly of small ribonucleoprotein particles (sRNPs), plays a key role in ribosome maturation and the translation process. Although many studies have been reported on this motif, the mechanism of sRNA folding coupled with protein binding is still poorly understood. Here, room and high temperature molecular dynamics (MD) simulations were performed on the complex of 25-nt kink-turn sRNA and L7Ae. The average RMSD values between the bound and corresponding apo structures and Kolmogorov-Smirnov P test analysis indicate that sRNA may follow an induced fit mechanism upon binding with L7Ae, both locally and globally. These conclusions are further supported by high-temperature unfolding kinetic analysis. Principal component analysis (PCA) found both closing and opening motions of the kink-turn sRNA. This might play a key role in the sRNP assembly and methylation catalysis. These combined computational methods can be used to study the specific recognition of other sRNAs and proteins.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kara M, Zacharias M. Theoretical studies of nucleic acids folding. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mahmut Kara
- Physics Department T38, Technical University Munich, Garching, Germany
| | - Martin Zacharias
- Martin Zacharias, Physics Department T38, Technical University Munich, Garching, Germany
| |
Collapse
|
17
|
Krepl M, Réblová K, Koča J, Sponer J. Bioinformatics and molecular dynamics simulation study of L1 stalk non-canonical rRNA elements: kink-turns, loops, and tetraloops. J Phys Chem B 2013; 117:5540-55. [PMID: 23534440 DOI: 10.1021/jp401482m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The L1 stalk is a prominent mobile element of the large ribosomal subunit. We explore the structure and dynamics of its non-canonical rRNA elements, which include two kink-turns, an internal loop, and a tetraloop. We use bioinformatics to identify the L1 stalk RNA conservation patterns and carry out over 11.5 μs of MD simulations for a set of systems ranging from isolated RNA building blocks up to complexes of L1 stalk rRNA with the L1 protein and tRNA fragment. We show that the L1 stalk tetraloop has an unusual GNNA or UNNG conservation pattern deviating from major GNRA and YNMG RNA tetraloop families. We suggest that this deviation is related to a highly conserved tertiary contact within the L1 stalk. The available X-ray structures contain only UCCG tetraloops which in addition differ in orientation (anti vs syn) of the guanine. Our analysis suggests that the anti orientation might be a mis-refinement, although even the anti interaction would be compatible with the sequence pattern and observed tertiary interaction. Alternatively, the anti conformation may be a real substate whose population could be pH-dependent, since the guanine syn orientation requires protonation of cytosine in the tertiary contact. In absence of structural data, we use molecular modeling to explore the GCCA tetraloop that is dominant in bacteria and suggest that the GCCA tetraloop is structurally similar to the YNMG tetraloop. Kink-turn Kt-77 is unusual due to its 11-nucleotide bulge. The simulations indicate that the long bulge is a stalk-specific eight-nucleotide insertion into consensual kink-turn only subtly modifying its structural dynamics. We discuss a possible evolutionary role of helix H78 and a mechanism of L1 stalk interaction with tRNA. We also assess the simulation methodology. The simulations provide a good description of the studied systems with the latest bsc0χOL3 force field showing improved performance. Still, even bsc0χOL3 is unable to fully stabilize an essential sugar-edge H-bond between the bulge and non-canonical stem of the kink-turn. Inclusion of Mg(2+) ions may deteriorate the simulations. On the other hand, monovalent ions can in simulations readily occupy experimental Mg(2+) binding sites.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
18
|
Réblová K, Šponer J, Lankaš F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Res 2012; 40:6290-303. [PMID: 22451682 PMCID: PMC3401443 DOI: 10.1093/nar/gks258] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 01/06/2023] Open
Abstract
The L1 stalk is a key mobile element of the large ribosomal subunit which interacts with tRNA during translocation. Here, we investigate the structure and mechanical properties of the rRNA H76/H75/H79 three-way junction at the base of the L1 stalk from four different prokaryotic organisms. We propose a coarse-grained elastic model and parameterize it using large-scale atomistic molecular dynamics simulations. Global properties of the junction are well described by a model in which the H76 helix is represented by a straight, isotropically flexible elastic rod, while the junction core is represented by an isotropically flexible spherical hinge. Both the core and the helix contribute substantially to the overall H76 bending fluctuations. The presence of wobble pairs in H76 does not induce any increased flexibility or anisotropy to the helix. The half-closed conformation of the L1 stalk seems to be accessible by thermal fluctuations of the junction itself, without any long-range allosteric effects. Bending fluctuations of H76 with a bulge introduced in it suggest a rationale for the precise position of the bulge in eukaryotes. Our elastic model can be generalized to other RNA junctions found in biological systems or in nanotechnology.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, CEITEC—Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, CEITEC—Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Filip Lankaš
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, CEITEC—Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
19
|
Réblová K, Šponer JE, Špačková N, Beššeová I, Šponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J Phys Chem B 2011; 115:13897-910. [PMID: 21999672 DOI: 10.1021/jp2065584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 μs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is likely supported by the surrounding protein and RNA molecules. A-0 may also be stabilized by additional kink-turn nucleotides not belonging to the kink-turn consensus, as shown for the kink-turn from ribosomal Helix 15. Quantum-chemical calculations on all four A-minor triples suggest that there is a different balance of electrostatic and dispersion stabilization in the A-I/G═C and A-I/C═G triples, which may explain different behavior of these otherwise isosteric triples in the context of kink-turns.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Sklenovský P, Florová P, Banáš P, Réblová K, Lankaš F, Otyepka M, Šponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. J Chem Theory Comput 2011; 7:2963-80. [PMID: 26605485 DOI: 10.1021/ct200204t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron. Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems. We report unrestrained, explicit solvent molecular dynamics simulations of ribosomal and intron reverse kink-turns (54 simulations with 7.4 μs of data in total) with different variants (ff94, ff99, ff99bsc0, ff99χOL, and ff99bsc0χOL) of the Cornell et al. force field. We test several ion conditions and two water models. The simulations characterize the directional intrinsic flexibility of reverse kink-turns pertinent to their folded functional geometries. The reverse kink-turns are the most flexible RNA motifs studied so far by explicit solvent simulations which are capable at the present simulation time scale to spontaneously and reversibly sample a wide range of geometries from tightly kinked ones through flexible intermediates up to extended, unkinked structures. A possible biochemical role of the flexibility is discussed. Among the tested force fields, the latest χOL variant is essential to obtaining stable trajectories while all force field versions lacking the χ correction are prone to a swift degradation toward senseless ladder-like structures of stems, characterized by high-anti glycosidic torsions. The type of explicit water model affects the simulations considerably more than concentration and the type of ions.
Collapse
Affiliation(s)
- Petr Sklenovský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Florová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Filip Lankaš
- Centre for Complex Molecular Systems and Biomolecules, Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2, 166 10 Praha 6, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
21
|
Pasquali S, Derreumaux P. HiRE-RNA: a high resolution coarse-grained energy model for RNA. J Phys Chem B 2010; 114:11957-66. [PMID: 20795690 DOI: 10.1021/jp102497y] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although RNAs play many cellular functions, the gap between their sequences and 3D structures is increasing and our knowledge of RNA thermodynamics and long time scale dynamics is still limited at an atomic level of detail. In principle, all-atom molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulations can investigate these issues, but with current computer facilities, these simulations in explicit solvent have been limited to small RNAs and to short times. To move to larger systems, we can resort to coarse-graining. In this study, we present HiRE-RNA, a generic high resolution coarse-grained model for RNA, and report MD and REMD simulations on two RNAs of 22 and 36 nucleotides. Starting from unfolded structures, the 22-mer folds within 1.8 A rmsd from the NMR structure, while the 36-mer folds within 4.6 A rmsd. Current results suggest that further optimization of the HiRE-RNA force field should open the door to a relevant model for studying large RNAs, such as riboswitches, and for predicting 3D structures from secondary structure information.
Collapse
Affiliation(s)
- Samuela Pasquali
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico Chimique et Université Paris Diderot-Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | |
Collapse
|
22
|
Spacková N, Réblová K, Sponer J. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. J Phys Chem B 2010; 114:10581-93. [PMID: 20701388 DOI: 10.1021/jp102572k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly bound water, which is adenine-specific similarly as the original interaction. The 16(O2')-7(N1) H-bond is stabilized by protein binding. The stabilizing effect is more visible with the human 15.5 kDa protein, which is attributed to valine to arginine substitution in the binding site. The behavior of the A-minor interaction is force-field-dependent because the parmbsc0 force field attenuates the A-minor fluctuations compared to parm99 simulations. Behavior of other regions of the box C/D RNA is not sensitive to the force field choice. Simulation with net-neutralizing Na(+) and 0.2 M excess salt conditions appear in all aspects equivalent. The simulations show loss of a hairpin tetraloop, which is not part of the K-turn. This was attributed to force field limitations.
Collapse
Affiliation(s)
- Nad'a Spacková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
23
|
Réblová K, Střelcová Z, Kulhánek P, Beššeová I, Mathews DH, Van Nostrand K, Yildirim I, Turner DH, Šponer J. An RNA Molecular Switch: Intrinsic Flexibility of 23S rRNA Helices 40 and 68 5′-UAA/5′-GAN Internal Loops Studied by Molecular Dynamics Methods. J Chem Theory Comput 2010; 6:910-29. [DOI: 10.1021/ct900440t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Zora Střelcová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Petr Kulhánek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Ivana Beššeová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - David H. Mathews
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Keith Van Nostrand
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Ilyas Yildirim
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Douglas H. Turner
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| |
Collapse
|
24
|
Réblová K, Střelcová Z, Kulhánek P, Beššeová I, Mathews DH, Nostrand KV, Yildirim I, Turner DH, Šponer J. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods. J Chem Theory Comput 2010; 2010:910-929. [PMID: 21132104 PMCID: PMC2994019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Functional RNA molecules such as ribosomal RNAs frequently contain highly conserved internal loops with a 5'-UAA/5'-GAN (UAA/GAN) consensus sequence. The UAA/GAN internal loops adopt distinctive structure inconsistent with secondary structure predictions. The structure has a narrow major groove and forms a trans Hoogsteen/Sugar edge (tHS) A/G base pair followed by an unpaired stacked adenine, a trans Watson-Crick/Hoogsteen (tWH) U/A base pair and finally by a bulged nucleotide (N). The structure is further stabilized by a three-adenine stack and base-phosphate interaction. In the ribosome, the UAA/GAN internal loops are involved in extensive tertiary contacts, mainly as donors of A-minor interactions. Further, this sequence can adopt an alternative 2D/3D pattern stabilized by a four-adenine stack involved in a smaller number of tertiary interactions. The solution structure of an isolated UAA/GAA internal loop shows substantially rearranged base pairing with three consecutive non-Watson-Crick base pairs. Its A/U base pair adopts an incomplete cis Watson-Crick/Sugar edge (cWS) A/U conformation instead of the expected Watson-Crick arrangement. We performed 3.1 µs of explicit solvent molecular dynamics (MD) simulations of the X-ray and NMR UAA/GAN structures, supplemented by MM-PBSA free energy calculations, locally enhanced sampling (LES) runs, targeted MD (TMD) and nudged elastic band (NEB) analysis. We compared parm99 and parmbsc0 force fields and net-neutralizing Na(+) vs. excess salt KCl ion environments. Both force fields provide a similar description of the simulated structures, with the parmbsc0 leading to modest narrowing of the major groove. The excess salt simulations also cause a similar effect. While the NMR structure is entirely stable in simulations, the simulated X-ray structure shows considerable widening of the major groove, loss of base-phosphate interaction and other instabilities. The alternative X-ray geometry even undergoes conformational transition towards the solution 2D structure. Free energy calculations confirm that the X-ray arrangement is less stable than the solution structure. LES, TMD and NEB provide a rather consistent pathway for interconversion between the X-ray and NMR structures. In simulations, the incomplete cWS A/U base pair of the NMR structure is water mediated and alternates with the canonical A-U base pair, which is not indicated by the NMR data. Completion of full cWS A/U base pair is prevented by the overall internal loop arrangement. In summary, the simulations confirm that the UAA/GAN internal loop is a molecular switch RNA module that adopts its functional geometry upon specific tertiary contexts.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Zora Střelcová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Ivana Beššeová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - David H. Mathews
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642
| | - Keith Van Nostrand
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642
| | - Ilyas Yildirim
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
25
|
Réblová K, Rázga F, Li W, Gao H, Frank J, Sponer J. Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Nucleic Acids Res 2009; 38:1325-40. [PMID: 19952067 PMCID: PMC2831300 DOI: 10.1093/nar/gkp1057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Helix 38 (H38) of the large ribosomal subunit, with a length of 110 A, reaches the small subunit through intersubunit bridge B1a. Previous cryo-EM studies revealed that the tip of H38 moves by more than 10 A from the non-ratcheted to the ratcheted state of the ribosome while mutational studies implicated a key role of flexible H38 in attenuation of translocation and in dynamical signaling between ribosomal functional centers. We investigate a region including the elbow-shaped kink-turn (Kt-38) in the Haloarcula marismortui archaeal ribosome, and equivalently positioned elbows in three eubacterial species, located at the H38 base. We performed explicit solvent molecular dynamics simulations on the H38 elbows in all four species. They are formed by at first sight unrelated sequences resulting in diverse base interactions but built with the same overall topology, as shown by X-ray crystallography. The elbows display similar fluctuations and intrinsic flexibilities in simulations indicating that the eubacterial H38 elbows are structural and dynamical analogs of archaeal Kt-38. We suggest that this structural element plays a pivotal role in the large motions of H38 and may act as fulcrum for the abovementioned tip motion. The directional flexibility inferred from simulations correlates well with the cryo-EM results.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolská 135, 61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|