1
|
Bisht K, Lomholt MA, Khandelia H. Sensing membrane voltage by reorientation of dipolar transmembrane peptides. Biophys J 2024; 123:584-597. [PMID: 38308436 PMCID: PMC10938080 DOI: 10.1016/j.bpj.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Membrane voltage plays a vital role in the behavior and functions of the lipid bilayer membrane. For instance, it regulates the exchange of molecules across the membrane through transmembrane proteins such as ion channels. In this paper, we study the membrane voltage-sensing mechanism, which entails the reorientation of α-helices with a change in the membrane voltage. We consider a helix having a large electrical macrodipole embedded in a lipid bilayer as a model system. We performed extensive molecular dynamics simulations to study the effect of variation of membrane voltage on the tilt angle of peptides and ascertain the optimal parameters for designing such a voltage-sensing peptide. A theoretical model for the system is also developed to investigate the interplay of competing effects of hydrophobic mismatch and dipole-electric field coupling on the tilt of the peptide and further explore the parameter space. This work opens the possibility for the design and fabrication of artificial dipolar membrane voltage-sensing elements for biomedical applications.
Collapse
Affiliation(s)
- Konark Bisht
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| | - Michael A Lomholt
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Himanshu Khandelia
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
2
|
Zou G, Ivleva VB, Wolff JJ, Yang RS, Alabanza C, Barefoot N, Cai C, Yang Y, Gowetski DB, Gall JG, Lei QP. Site-Specific Fluorescent Labeling of Hemagglutinin-Specific Antigen Binding Fragment through Amine Chemistry Revealed by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:813-819. [PMID: 37000420 DOI: 10.1021/jasms.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To capture the structure of assembled hemagglutinin (HA) nanoparticles at single-particle resolution, HA-specific antigen binding fragments (Fabs) were labeled by fluorescent (FLR) dyes as probes to highlight the HA trimers displayed on the assembled tetravalent HA nanoparticles for a qualitative localization microscopic study. The FLR dyes were conjugated to the Fabs through N-hydroxysuccinimide (NHS) ester mediated amine coupling chemistry. The labeling profile, including labeling ratio, distribution, and site-specific labeling occupancy, can affect the imaging results and introduce inconsistency. To evaluate the labeling profile so as to evaluate the labeling efficiency, a combination of intact mass measurement by MALDI-MS and peptide mapping through LC-MS/MS was implemented. At the intact molecular level, the labeling ratio and distribution were determined. Through peptide mapping, the labeled residues were identified and the corresponding site-specific labeling occupancy was measured. A systematic comparative investigation of four different FLR-labeled 1H01-Fabs (generated from H1 strain HA specific mAb 1H01) allowed accurate profiling of the labeling pattern. The data indicate that the labeling was site-specific and semiquantitative. This warrants the consistency of single-particle fluorescent imaging experiments and allows a further imaging characterization of the single nanoparticles.
Collapse
Affiliation(s)
- Guozhang Zou
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Jeremy J Wolff
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Rong Sylvie Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Casper Alabanza
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Nathan Barefoot
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Cindy Cai
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Yanhong Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Daniel B Gowetski
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Jason G Gall
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, Maryland 20878, United States
| |
Collapse
|
3
|
Spinti JK, Neiva Nunes F, Melo MN. Room for improvement in the initial martini 3 parameterization of peptide interactions. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
4
|
Morales-Martínez A, Bertrand B, Hernández-Meza JM, Garduño-Juárez R, Silva-Sanchez J, Munoz-Garay C. Membrane fluidity, composition, and charge affect the activity and selectivity of the AMP ascaphin-8. Biophys J 2022; 121:3034-3048. [PMID: 35842753 PMCID: PMC9463648 DOI: 10.1016/j.bpj.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 12/29/2022] Open
Abstract
Ascaphins are cationic antimicrobial peptides that have been shown to have potential in the treatment of infectious diseases caused by multidrug-resistant pathogens (MDR). However, to date, their principal molecular target and mechanism of action are unknown. Results from peptide prediction software and molecular dynamics simulations confirmed that ascaphin-8 is an alpha-helical peptide. For the first time, the peptide was described as membranotrophic using biophysical approaches including calcein liposome leakage, Laurdan general polarization, and dynamic light scattering. Ascaphin-8's activity and selectivity were modulated by rearranging the spatial distribution of lysine (Var-K5), aspartic acid (Var-D4) residues, or substitution of phenylalanine with tyrosine (Var-Y). The parental peptide and its variants presented high affinity toward the bacterial membrane model (≤2 μM), but lost activity in sterol-enriched membranes (mammal and fungal models, with cholesterol and ergosterol, respectively). The peptide-induced pore size was estimated to be >20 nm in the bacterial model, with no difference among peptides. The same pattern was observed in membrane fluidity (general polarization) assays, where all peptides reduced membrane fluidity of the bacterial model but not in the models containing sterols. The peptides also showed high activity toward MDR bacteria. Moreover, peptide sensitivity of the artificial membrane models compared with pathogenic bacterial isolates were in good agreement.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Juan M Hernández-Meza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Jesús Silva-Sanchez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
5
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Kondrashov OV, Pinigin KV, Akimov SA. Characteristic lengths of transmembrane peptides controlling their tilt and lateral distribution between membrane domains. Phys Rev E 2021; 104:044411. [PMID: 34781459 DOI: 10.1103/physreve.104.044411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/04/2021] [Indexed: 11/07/2022]
Abstract
Lipids and proteins of plasma membranes of eukaryotic cells are supposed to form protein-lipid domains, characterized by a different molecular order, bilayer thickness, and elastic parameters. Several mechanisms of preferable distribution of transmembrane proteins to the ordered or disordered membrane domains have been revealed. The mismatch between the length of the protein transmembrane domain and hydrophobic thickness of the lipid bilayer is considered to be an important driving force of protein lateral sorting. Utilizing the continuum theory of elasticity, we analyzed optimal configurations and preferable membrane domains for single-pass transmembrane peptides of various hydrophobic lengths and effective molecular shapes. We obtained that short transmembrane peptides stand perpendicularly to the membrane plane. The exceedance of a certain characteristic length leads to the tilt of the peptide. This length depends on the bilayer thickness. Thus, in the membrane with coexisting ordered (thicker) and disordered (thinner) phases tilting of the peptide in each phase is governed by its individual characteristic length. The lateral distribution of the peptides between ordered and disordered membrane domains is shown to be described by two additional characteristic lengths. The exceedance of the smaller one drives the peptide towards a more ordered and thicker membrane, while the exceedance of the larger characteristic length switches the preferable membrane domain from ordered and thicker to disordered and thinner. Thus, membrane proteins with long enough transmembrane domains are predicted to accumulate in the thinner disordered membrane as compared to the thicker ordered bilayer. For hourglass-like and barrel-like shaped transmembrane peptides the specific regime of sorting was obtained: the peptides distributed almost equally between the phases in a wide range of peptide lengths. This finding allowed explaining the experimental data on lateral distribution of transmembrane peptide tLAT.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| |
Collapse
|
7
|
Photophysical Properties of BADAN Revealed in the Study of GGBP Structural Transitions. Int J Mol Sci 2021; 22:ijms222011113. [PMID: 34681772 PMCID: PMC8540541 DOI: 10.3390/ijms222011113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The fluorescent dye BADAN (6-bromoacetyl-2-dimetylaminonaphtalene) is widely used in various fields of life sciences, however, the photophysical properties of BADAN are not fully understood. The study of the spectral properties of BADAN attached to a number of mutant forms of GGBP, as well as changes in its spectral characteristics during structural changes in proteins, allowed to shed light on the photophysical properties of BADAN. It was shown that spectral properties of BADAN are determined by at least one non-fluorescent and two fluorescent isomers with overlapping absorbing bands. It was found that BADAN fluorescence is determined by the unsolvated "PICT" (planar intramolecular charge transfer state) and solvated "TICT" (twisted intramolecular charge transfer state) excited states. While "TICT" state can be formed both as a result of the "PICT" state solvation and as a result of light absorption by the solvated ground state of the dye. BADAN fluorescence linked to GGBP/H152C apoform is quenched by Trp 183, but this effect is inhibited by glucose intercalation. New details of the changes in the spectral characteristics of BADAN during the unfolding of the protein apo and holoforms have been obtained.
Collapse
|
8
|
Alford RF, Samanta R, Gray JJ. Diverse Scientific Benchmarks for Implicit Membrane Energy Functions. J Chem Theory Comput 2021; 17:5248-5261. [PMID: 34310137 DOI: 10.1021/acs.jctc.0c00646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Energy functions are fundamental to biomolecular modeling. Their success depends on robust physical formalisms, efficient optimization, and high-resolution data for training and validation. Over the past 20 years, progress in each area has advanced soluble protein energy functions. Yet, energy functions for membrane proteins lag behind due to sparse and low-quality data, leading to overfit tools. To overcome this challenge, we assembled a suite of 12 tests on independent data sets varying in size, diversity, and resolution. The tests probe an energy function's ability to capture membrane protein orientation, stability, sequence, and structure. Here, we present the tests and use the franklin2019 energy function to demonstrate them. We then identify areas for energy function improvement and discuss potential future integration with machine-learning-based optimization methods. The tests are available through the Rosetta Benchmark Server (https://benchmark.graylab.jhu.edu/) and GitHub (https://github.com/rfalford12/Implicit-Membrane-Energy-Function-Benchmark).
Collapse
Affiliation(s)
- Rebecca F Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Rituparna Samanta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States.,Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Protein Structure Prediction and Design in a Biologically Realistic Implicit Membrane. Biophys J 2020; 118:2042-2055. [PMID: 32224301 DOI: 10.1016/j.bpj.2020.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
Protein design is a powerful tool for elucidating mechanisms of function and engineering new therapeutics and nanotechnologies. Although soluble protein design has advanced, membrane protein design remains challenging because of difficulties in modeling the lipid bilayer. In this work, we developed an implicit approach that captures the anisotropic structure, shape of water-filled pores, and nanoscale dimensions of membranes with different lipid compositions. The model improves performance in computational benchmarks against experimental targets, including prediction of protein orientations in the bilayer, ΔΔG calculations, native structure discrimination, and native sequence recovery. When applied to de novo protein design, this approach designs sequences with an amino acid distribution near the native amino acid distribution in membrane proteins, overcoming a critical flaw in previous membrane models that were prone to generating leucine-rich designs. Furthermore, the proteins designed in the new membrane model exhibit native-like features including interfacial aromatic side chains, hydrophobic lengths compatible with bilayer thickness, and polar pores. Our method advances high-resolution membrane protein structure prediction and design toward tackling key biological questions and engineering challenges.
Collapse
|
10
|
F Dudás E, Wacha A, Bóta A, Bodor A. Peptide-bicelle interaction: Following variations in size and morphology by a combined NMR-SAXS approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183095. [PMID: 31672542 DOI: 10.1016/j.bbamem.2019.183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Changes in membrane properties occurring upon protein interaction are key questions in understanding membrane protein function. To report on the occurring size and shape variation we present here a combined NMR-SAXS method performed under physiological conditions using the same samples, enabling determination of a global parameter, the hydration radius (rH) and estimating the bicelle shape. We use zwitterionic (DMPC/DHPC) and negatively charged (DMPC/DHPC/DMPG) bicelles and investigate the interaction with model transmembrane and surface active peptides (KALP23 and melittin). 1H NMR measurements based mostly on the translational diffusion coefficient D determination are used to characterize cmc values of DHPC micelles under the investigated conditions, to describe DHPC distribution with exact determination of the q (long chain/short chain) lipid ratio, to estimate aggregation numbers and effective rH values. The scattering curve is used to fit a lenticular core-shell model enabling us to describe the bicelle shape in terms of ellipsoidal axis length parameters. For all studied systems formation of oblate ellipsoids is found. Even though the rG/rH ratio would be an elegant way to characterize shape variations, we show that changes occurring upon peptide-bicelle interaction in the "effective" size and in the measure on the anisometry - morphology - of the objects can be described by using rH and the simplistic ellipsoidal core-shell model. While the influence of the transmembrane KALP peptide is significant, effects upon addition of surface active melittin peptide seem negligible. This synergy of techniques under controlled conditions can provide information about bicellar shape modulation occurring during peptide-bicelle interactions.
Collapse
Affiliation(s)
- E F Dudás
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - A Wacha
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bóta
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| |
Collapse
|
11
|
Alves DS, Westerfield JM, Shi X, Nguyen VP, Stefanski KM, Booth KR, Kim S, Morrell-Falvey J, Wang BC, Abel SM, Smith AW, Barrera FN. A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration. eLife 2018; 7:36645. [PMID: 30222105 PMCID: PMC6192698 DOI: 10.7554/elife.36645] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/16/2018] [Indexed: 12/19/2022] Open
Abstract
Misregulation of the signaling axis formed by the receptor tyrosine kinase (RTK) EphA2 and its ligand, ephrinA1, causes aberrant cell-cell contacts that contribute to metastasis. Solid tumors are characterized by an acidic extracellular medium. We intend to take advantage of this tumor feature to design new molecules that specifically target tumors. We created a novel pH-dependent transmembrane peptide, TYPE7, by altering the sequence of the transmembrane domain of EphA2. TYPE7 is highly soluble and interacts with the surface of lipid membranes at neutral pH, while acidity triggers transmembrane insertion. TYPE7 binds to endogenous EphA2 and reduces Akt phosphorylation and cell migration as effectively as ephrinA1. Interestingly, we found large differences in juxtamembrane tyrosine phosphorylation and the extent of EphA2 clustering when comparing TYPE7 with activation by ephrinA1. This work shows that it is possible to design new pH-triggered membrane peptides to activate RTK and gain insights on its activation mechanism.
Collapse
Affiliation(s)
- Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
| | - Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
| | - Xiaojun Shi
- Department of Chemistry, University of Akron, Akron, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States.,Pharmacology, Case Western Reserve University, Cleveland, United States.,Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, United States
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
| | - Katherine M Stefanski
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, United States
| | - Kristen R Booth
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
| | - Soyeon Kim
- Department of Chemistry, University of Akron, Akron, United States
| | - Jennifer Morrell-Falvey
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, United States
| | - Bing-Cheng Wang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States.,Pharmacology, Case Western Reserve University, Cleveland, United States.,Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, United States.,National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, United States
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
| |
Collapse
|
12
|
Hills RD. Refining amino acid hydrophobicity for dynamics simulation of membrane proteins. PeerJ 2018; 6:e4230. [PMID: 29340240 PMCID: PMC5767086 DOI: 10.7717/peerj.4230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Coarse-grained (CG) models have been successful in simulating the chemical properties of lipid bilayers, but accurate treatment of membrane proteins and lipid-protein molecular interactions remains a challenge. The CgProt force field, original developed with the multiscale coarse graining method, is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. Reassignment of select CG sidechain sites from the apolar to polar site type was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlates with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These experimental values serve as important anchor points in choosing between alternate CG models based on their observed permeation profiles, particularly for Arg, Lys and Gln residues where the all-atom OPLS solvation energy does not agree well with experiment. Available partitioning data was also used to reparameterize the representation of the peptide backbone, which needed to be made less attractive for the bilayer hydrophobic core region. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in studies of lipid-protein interactions and the conformational properties of diverse membrane protein systems.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, United States of America
| |
Collapse
|
13
|
Environmentally sensitive probes for monitoring protein-membrane interactions at nanomolar concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:852-859. [DOI: 10.1016/j.bbamem.2017.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/31/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022]
|
14
|
Fosso-Tande J, Black C, G. Aller S, Lu L, D. Hills Jr R. Simulation of lipid-protein interactions with the CgProt force field. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Lelimousin M, Limongelli V, Sansom MSP. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J Am Chem Soc 2016; 138:10611-22. [PMID: 27459426 PMCID: PMC5010359 DOI: 10.1021/jacs.6b05602] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The epidermal growth
factor receptor (EGFR) is a dimeric membrane
protein that regulates key aspects of cellular function. Activation
of the EGFR is linked to changes in the conformation of the transmembrane
(TM) domain, brought about by changes in interactions of the TM helices
of the membrane lipid bilayer. Using an advanced computational approach
that combines Coarse-Grained molecular dynamics and well-tempered
MetaDynamics (CG-MetaD), we characterize the large-scale motions
of the TM helices, simulating multiple association and dissociation
events between the helices in membrane, thus leading to a free energy
landscape of the dimerization process. The lowest energy state of
the TM domain is a right-handed dimer structure in which the TM helices
interact through the N-terminal small-X3-small sequence
motif. In addition to this state, which is thought to correspond to
the active form of the receptor, we have identified further low-energy
states that allow us to integrate with a high level of detail a range
of previous experimental observations. These conformations may lead
to the active state via two possible activation pathways, which involve
pivoting and rotational motions of the helices, respectively. Molecular
dynamics also reveals correlation between the conformational changes
of the TM domains and of the intracellular juxtamembrane domains,
paving the way for a comprehensive understanding of EGFR signaling
at the cell membrane.
Collapse
Affiliation(s)
- Mickaël Lelimousin
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,CERMAV, Université Grenoble Alpes and CNRS , BP 53, F-38041 Grenoble Cedex 9, France
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13, CH-6900 Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, I-80131 Naples, Italy
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
16
|
Fonin A, Kuznetsova I, Turoverov K. Spectral properties of BADAN in solutions with different polarities. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Pospíšil P, Luxem KE, Ener M, Sýkora J, Kocábová J, Gray HB, Vlček A, Hof M. Fluorescence quenching of (dimethylamino)naphthalene dyes Badan and Prodan by tryptophan in cytochromes P450 and micelles. J Phys Chem B 2014; 118:10085-91. [PMID: 25079965 PMCID: PMC4148165 DOI: 10.1021/jp504625d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Fluorescence
of 2-(N,N-dimethylamino)-6-propionylnaphthalene
dyes Badan and Prodan is quenched by tryptophan in Brij 58 micelles
as well as in two cytochrome P450 proteins (CYP102, CYP119) with Badan
covalently attached to a cysteine residue. Formation of nonemissive
complexes between a dye molecule and tryptophan accounts for about
76% of the fluorescence intensity quenching in micelles, the rest
is due to diffusive encounters. In the absence of tryptophan, fluorescence
of Badan-labeled cytochromes decays with triexponential kinetics characterized
by lifetimes of about 100 ps, 700–800 ps, and 3 ns. Site mutation
of a histidine residue in the vicinity of the Badan label by tryptophan
results in shortening of all three decay lifetimes. The relative amplitude
of the fastest component increases at the expense of the two slower
ones. The average quenching rate constants are 4.5 × 108 s–1 (CYP102) and 3.7 × 108 s–1 (CYP119), at 288 K. Cyclic voltammetry of Prodan
in MeCN shows a reversible reduction peak at −1.85 V vs NHE
that becomes chemically irreversible and shifts positively upon addition
of water. A quasireversible reduction at −0.88 V was observed
in an aqueous buffer (pH 7.3). The excited-state reduction potential
of Prodan (and Badan) is estimated to vary from about +0.6 V (vs NHE)
in polar aprotic media (MeCN) to approximately +1.6 V in water. Tryptophan
quenching of Badan/Prodan fluorescence in CYPs and Brij 58 micelles
is exergonic by ≤0.5 V and involves tryptophan oxidation by
excited Badan/Prodan, coupled with a fast reaction between the reduced
dye and water. Photoreduction is a new quenching mechanism for 2-(N,N-dimethylamino)-6-propionylnaphthalene
dyes that are often used as solvatochromic polarity probes, FRET donors
and acceptors, as well as reporters of solvation dynamics.
Collapse
Affiliation(s)
- Petr Pospíšil
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kar P, Gopal SM, Cheng YM, Panahi A, Feig M. Transferring the PRIMO Coarse-Grained Force Field to the Membrane Environment: Simulations of Membrane Proteins and Helix-Helix Association. J Chem Theory Comput 2014; 10:3459-3472. [PMID: 25136271 PMCID: PMC4132866 DOI: 10.1021/ct500443v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 12/03/2022]
Abstract
![]()
An
extension of the recently developed PRIMO coarse-grained force
field to membrane environments, PRIMO-M, is described. The membrane
environment is modeled with the heterogeneous dielectric generalized
Born (HDGB) methodology that simply replaces the standard generalized
Born model in PRIMO without further parametrization. The resulting
model was validated by comparing amino acid insertion free energy
profiles and application in molecular dynamics simulations of membrane
proteins and membrane-interacting peptides. Membrane proteins with
148–661 amino acids show stable root-mean-squared-deviations
(RMSD) between 2 and 4 Å for most systems. Transmembrane helical
peptides maintain helical shape and exhibit tilt angles in good agreement
with experimental or other simulation data. The association of two
glycophorin A (GpA) helices was simulated using replica exchange molecular
dynamics simulations yielding the correct dimer structure with a crossing
angle in agreement with previous studies. Finally, conformational
sampling of the influenza fusion peptide also generates structures
in agreement with previous studies. Overall, these findings suggest
that PRIMO-M can be used to study membrane bound peptides and proteins
and validates the transferable nature of the PRIMO coarse-grained
force field.
Collapse
Affiliation(s)
- Parimal Kar
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Srinivasa Murthy Gopal
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Yi-Ming Cheng
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Afra Panahi
- Departments of Chemistry and Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States ; Department of Biochemistry and Molecular Biology and Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Carballo-Pacheco M, Vancea I, Strodel B. Extension of the FACTS Implicit Solvation Model to Membranes. J Chem Theory Comput 2014; 10:3163-76. [DOI: 10.1021/ct500084y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Martín Carballo-Pacheco
- Forschungszentrum Jülich GmbH, Institute of Complex
Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
| | - Ioan Vancea
- Forschungszentrum Jülich GmbH, Institute of Complex
Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
| | - Birgit Strodel
- Forschungszentrum Jülich GmbH, Institute of Complex
Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Bereau T, Wang ZJ, Deserno M. More than the sum of its parts: coarse-grained peptide-lipid interactions from a simple cross-parametrization. J Chem Phys 2014; 140:115101. [PMID: 24655203 PMCID: PMC3977883 DOI: 10.1063/1.4867465] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 11/14/2022] Open
Abstract
Interfacial systems are at the core of fascinating phenomena in many disciplines, such as biochemistry, soft-matter physics, and food science. However, the parametrization of accurate, reliable, and consistent coarse-grained (CG) models for systems at interfaces remains a challenging endeavor. In the present work, we explore to what extent two independently developed solvent-free CG models of peptides and lipids--of different mapping schemes, parametrization methods, target functions, and validation criteria--can be combined by only tuning the cross-interactions. Our results show that the cross-parametrization can reproduce a number of structural properties of membrane peptides (for example, tilt and hydrophobic mismatch), in agreement with existing peptide-lipid CG force fields. We find encouraging results for two challenging biophysical problems: (i) membrane pore formation mediated by the cooperative action of several antimicrobial peptides, and (ii) the insertion and folding of the helix-forming peptide WALP23 in the membrane.
Collapse
Affiliation(s)
- Tristan Bereau
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Zun-Jing Wang
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
21
|
Postupalenko VY, Zamotaiev OM, Shvadchak VV, Strizhak AV, Pivovarenko VG, Klymchenko AS, Mely Y. Dual-fluorescence L-amino acid reports insertion and orientation of melittin peptide in cell membranes. Bioconjug Chem 2013; 24:1998-2007. [PMID: 24266665 DOI: 10.1021/bc400325n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring insertion and orientation of peptides in situ on cell membranes remains a challenge. To this end, we synthesized an l-amino acid (AFaa) containing a dual-fluorescence dye of the 3-hydroxyflavone family, as a side chain. In contrast to other labeling approaches using a flexible linker, the AFaa fluorophore, introduced by solid phase synthesis into desired position of a peptide, is attached closely to its backbone with well-defined orientation, and, therefore, could reflect its localization in the membrane. This concept was validated by replacing the leucine-9 (L9) and tryptophan-19 (W19) residues by AFaa in melittin, a well-studied membrane-active peptide. Due to high sensitivity of AFaa dual emission to the environment polarity, we detected a much deeper insertion of L9 peptide position into the bilayer, compared to the W19 position. Moreover, using fluorescence microscopy with a polarized light excitation, we found different orientation of AFaa at L9 and W19 positions of melittin in the bilayers of giant vesicles and cellular membranes. These results suggested that in the natural membranes, similarly to the model lipid bilayers, melittin is preferentially oriented parallel to the membrane surface. The developed amino acid and the proposed methodology will be of interest to study other membrane peptides.
Collapse
Affiliation(s)
- Viktoriia Y Postupalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin. Chem Phys 2013; 430:88-97. [PMID: 24039330 DOI: 10.1016/j.chemphys.2013.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.
Collapse
|
23
|
Panahi A, Feig M. Dynamic Heterogeneous Dielectric Generalized Born (DHDGB): An implicit membrane model with a dynamically varying bilayer thickness. J Chem Theory Comput 2013; 9:1709-1719. [PMID: 23585740 PMCID: PMC3622271 DOI: 10.1021/ct300975k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An extension to the heterogeneous dielectric generalized Born (HDGB) implicit membrane formalism is presented to allow dynamic membrane deformations in response to membrane-inserted biomolecules during molecular dynamic simulations. The flexible membrane is implemented through additional degrees of freedom that represent the membrane deformation at the contact points of a membrane-inserted solute with the membrane. The extra degrees of freedom determine the dielectric and non-polar solvation free energy profiles that are used to obtain the solvation free energy in the presence of the membrane and are used to calculate membrane deformation free energies according to an elastic membrane model. With the dynamic HDGB (DHDGB) model the membrane is able to deform in response to the insertion of charged molecules thereby avoiding the overestimation of insertion free energies with static membrane models. The DHDGB model also allows the membrane to respond to the insertion of membrane-spanning solutes with hydrophobic mismatch. The model is tested with the membrane insertion of amino acid side chain analogs, arginine-containing helices, the WALP23 peptide, and the gramicidin A channel.
Collapse
Affiliation(s)
- Afra Panahi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Michael Feig
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
24
|
Rankenberg JM, Vostrikov VV, Greathouse DV, Grant CV, Opella SJ, Koeppe RE. Properties of membrane-incorporated WALP peptides that are anchored on only one end. Biochemistry 2012; 51:10066-74. [PMID: 23171005 DOI: 10.1021/bi301394z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides of the "WALP" family, acetyl-GWW(LA)(n)LWWA-[ethanol]amide, have proven to be opportune models for investigating lipid-peptide interactions. Because the average orientations and motional behavior of the N- and C-terminal Trp (W) residues differ, it is of interest to investigate how the positions of the tryptophans influence the properties of the membrane-incorporated peptides. To address this question, we synthesized acetyl-GGWW(LA)(n)-ethanolamide and acetyl-(AL)(n)WWG-ethanolamide, in which n = 4 or 8, which we designate as "N-anchored" and "C-anchored" peptides, respectively. Selected (2)H or (15)N labels were incorporated for solid-state nuclear magnetic resonance (NMR) spectroscopy. These peptides can be considered "half"-anchored WALP peptides, having only one pair of interfacial Trp residues near either the amino or the carboxyl terminus. The hydrophobic lengths of the (n = 8) peptides are similar to that of WALP23. These longer half-anchored WALP peptides incorporate into lipid bilayers as α-helices, as reflected in their circular dichroism spectra. Solid-state NMR experiments indicate that the longer peptide helices assume defined transmembrane orientations with small non-zero average tilt angles and moderate to high dynamic averaging in bilayer membranes of 1,2-dioleoylphosphatidylcholine, 1,2-dimyristoylphosphatidylcholine, and 1,2-dilauroylphosphatidylcholine. The intrinsically small apparent tilt angles suggest that interactions of aromatic residues with lipid headgroups may play an important role in determining the magnitude of the peptide tilt in the bilayer membrane. The shorter (n = 4) peptides, in stark contrast to the longer peptides, display NMR spectra that are characteristic of greatly reduced motional averaging, probably because of peptide aggregation in the bilayer environment, and CD spectra that are characteristic of β-structure.
Collapse
Affiliation(s)
- Johanna M Rankenberg
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | |
Collapse
|
25
|
Grage SL, Strandberg E, Wadhwani P, Esteban-Martín S, Salgado J, Ulrich AS. Comparative analysis of the orientation of transmembrane peptides using solid-state 2H- and 15N-NMR: mobility matters. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:475-82. [DOI: 10.1007/s00249-012-0801-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 02/01/2023]
|
26
|
Strandberg E, Esteban-Martín S, Ulrich AS, Salgado J. Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1242-9. [PMID: 22326890 DOI: 10.1016/j.bbamem.2012.01.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Hydrophobic mismatch still represents a puzzle for transmembrane peptides, despite the apparent simplicity of this concept and its demonstrated validity in natural membranes. Using a wealth of available experimental ((2))H NMR data, we provide here a comprehensive explanation of the orientation and dynamics of model peptides in lipid bilayers, which shows how they can adapt to membranes of different thickness. The orientational adjustment of transmembrane α-helices can be understood as the result of a competition between the thermodynamically unfavorable lipid repacking associated with peptide tilting and the optimization of peptide/membrane hydrophobic coupling. In the positive mismatch regime (long-peptide/thin-membrane) the helices adapt mainly via changing their tilt angle, as expected from simple geometrical predictions. However, the adaptation mechanism varies with the peptide sequence in the flanking regions, suggesting additional effects that modulate hydrophobic coupling. These originate from re-adjustments of the peptide hydrophobic length and they depend on the hydrophobicity of the flanking region, the strength of interfacial anchoring, the structural flexibility of anchoring side-chains and the presence of alternative anchoring residues.
Collapse
Affiliation(s)
- Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | |
Collapse
|
27
|
Probing the lipid-protein interface using model transmembrane peptides with a covalently linked acyl chain. Biophys J 2012; 101:1959-67. [PMID: 22004750 DOI: 10.1016/j.bpj.2011.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to gain insight into how interactions between proteins and lipids in membranes are sensed at the protein-lipid interface. As a probe to analyze this interface, we used deuterium-labeled acyl chains that were covalently linked to a model transmembrane peptide. First, a perdeuterated palmitoyl chain was coupled to the Trp-flanked peptide WALP23 (Ac-CGWW(LA)(8)LWWA-NH(2)), and the deuterium NMR spectrum was analyzed in di-C18:1-phosphatidylcholine (PC) bilayers. We found that the chain order of this peptide-linked chain is rather similar to that of a noncovalently coupled perdeuterated palmitoyl chain, except that it exhibits a slightly lower order. Similar results were obtained when site-specific deuterium labels were used and when the palmitoyl chain was attached to the more-hydrophobic model peptide WLP23 (Ac-CGWWL(17)WWA-NH(2)) or to the Lys-flanked peptide KALP23 (Ac-CGKK(LA)(8)LKKA-NH(2)). The experiments showed that the order of both the peptide-linked chains and the noncovalently coupled palmitoyl chains in the phospholipid bilayer increases in the order KALP23 < WALP23 < WLP23. Furthermore, changes in the bulk lipid bilayer thickness caused by varying the lipid composition from di-C14:1-PC to di-C18:1-PC or by including cholesterol were sensed rather similarly by the covalently coupled chain and the noncovalently coupled palmitoyl chains. The results indicate that the properties of lipids adjacent to transmembrane peptides mostly reflect the properties of the surrounding lipid bilayer, and hence that (at least for the single-span model peptides used in this study) annular lipids do not play a highly specific role in protein-lipid interactions.
Collapse
|
28
|
Kim T, Jo S, Im W. Solid-state NMR ensemble dynamics as a mediator between experiment and simulation. Biophys J 2011; 100:2922-8. [PMID: 21689525 DOI: 10.1016/j.bpj.2011.02.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/14/2011] [Accepted: 02/25/2011] [Indexed: 11/20/2022] Open
Abstract
Solid-state NMR (SSNMR) is a powerful technique to describe the orientations of membrane proteins and peptides in their native membrane bilayer environments. The deuterium ((2)H) quadrupolar splitting (DQS), one of the SSNMR observables, has been used to characterize the orientations of various single-pass transmembrane (TM) helices using a semistatic rigid-body model such as the geometric analysis of labeled alanine (GALA) method. However, dynamic information of these TM helices, which could be related to important biological function, can be missing or misinterpreted with the semistatic model. We have investigated the orientation of WALP23 in an implicit membrane of dimyristoylglycerophosphocholine by determining an ensemble of structures using multiple conformer models with a DQS restraint potential. When a single conformer is used, the resulting helix orientation (tilt angle (τ) of 5.6 ± 3.2° and rotation angle (ρ) of 141.8 ± 40.6°) is similar to that determined by the GALA method. However, as the number of conformers is increased, the tilt angles of WALP23 ensemble structures become larger (26.9 ± 6.7°), which agrees well with previous molecular dynamics simulation results. In addition, the ensemble structure distribution shows excellent agreement with the two-dimensional free energy surface as a function of WALP23's τ and ρ. These results demonstrate that SSNMR ensemble dynamics provides a means to extract orientational and dynamic information of TM helices from their SSNMR observables and to explain the discrepancy between molecular dynamics simulation and GALA-based interpretation of DQS data.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Molecular Biosciences, Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, USA
| | | | | |
Collapse
|
29
|
Wan CK, Han W, Wu YD. Parameterization of PACE Force Field for Membrane Environment and Simulation of Helical Peptides and Helix–Helix Association. J Chem Theory Comput 2011; 8:300-13. [DOI: 10.1021/ct2004275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Cheuk-Kin Wan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Han
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yun-Dong Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Chemical Biology and Biotechnology, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- College of Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
30
|
Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci U S A 2011; 108:1343-8. [PMID: 21205902 DOI: 10.1073/pnas.1009362108] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into the liquid-disordered domains of phase-separated model membranes, irrespective of peptide-lipid hydrophobic mismatch. Free energy calculations show that the enthalpic contribution due to the packing of the lipids drives the lateral sorting of the helices. Hydrophobic mismatch regulates the clustering into either small dynamic or large static aggregates. These results reveal important molecular driving forces for the lateral organization and self-assembly of transmembrane helices in heterogeneous model membranes, with implications for the formation of functional protein complexes in real cells.
Collapse
|
31
|
Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys J 2010; 99:1447-54. [PMID: 20816056 DOI: 10.1016/j.bpj.2010.05.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/14/2010] [Accepted: 05/20/2010] [Indexed: 02/01/2023] Open
Abstract
We investigated the effect of amino acid composition and hydrophobic length of alpha-helical transmembrane peptides and the role of electrostatic interactions on the lateral diffusion of the peptides in lipid membranes. Model peptides of varying length and composition, and either tryptophans or lysines as flanking residues, were synthesized. The peptides were labeled with the fluorescent label Alexa Fluor 488 and incorporated into phospholipid bilayers of different hydrophobic thickness and composition. Giant unilamellar vesicles were formed by electroformation, and the lateral diffusion of the transmembrane peptides (and lipids) was determined by fluorescence correlation spectroscopy. In addition, we performed coarse-grained molecular-dynamics simulations of single peptides of different hydrophobic lengths embedded in planar membranes of different thicknesses. Both the experimental and simulation results indicate that lateral diffusion is sensitive to membrane thickness between the peptides and surrounding lipids. We did not observe a difference in the lateral diffusion of the peptides with respect to the presence of tryptophans or lysines as flanking residues. The specific lipid headgroup composition of the membrane has a much less pronounced impact on the diffusion of the peptides than does the hydrophobic thickness.
Collapse
|
32
|
Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. Biophys J 2010; 99:175-83. [PMID: 20655845 DOI: 10.1016/j.bpj.2010.04.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 01/31/2023] Open
Abstract
Protein-lipid interaction and bilayer regulation of membrane protein functions are largely controlled by the hydrophobic match between the transmembrane (TM) domain of membrane proteins and the surrounding lipid bilayer. To systematically characterize responses of a TM helix and lipid adaptations to a hydrophobic mismatch, we have performed a total of 5.8-mus umbrella sampling simulations and calculated the potentials of mean force (PMFs) as a function of TM helix tilt angle under various mismatch conditions. Single-pass TM peptides called WALPn (n = 16, 19, 23, and 27) were used in two lipid bilayers with different hydrophobic thicknesses to consider hydrophobic mismatch caused by either the TM length or the bilayer thickness. In addition, different flanking residues, such as alanine, lysine, and arginine, instead of tryptophan in WALP23 were used to examine their influence. The PMFs, their decomposition, and trajectory analysis demonstrate that 1), tilting of a single-pass TM helix is the major response to a hydrophobic mismatch; 2), TM helix tilting up to approximately 10 degrees is inherent due to the intrinsic entropic contribution arising from helix precession around the membrane normal even under a negative mismatch; 3), the favorable helix-lipid interaction provides additional driving forces for TM helix tilting under a positive mismatch; 4), the minimum-PMF tilt angle is generally located where there is the hydrophobic match and little lipid perturbation; 5), TM helix rotation is dependent on the specific helix-lipid interaction; and 6), anchoring residues at the hydrophilic/hydrophobic interface can be an important determinant of TM helix orientation.
Collapse
|
33
|
Monitoring membrane binding and insertion of peptides by two-color fluorescent label. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:424-32. [PMID: 20932819 DOI: 10.1016/j.bbamem.2010.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022]
Abstract
Herein, we developed an approach for monitoring membrane binding and insertion of peptides using a fluorescent environment-sensitive label of the 3-hydroxyflavone family. For this purpose, we labeled the N-terminus of three synthetic peptides, melittin, magainin 2 and poly-l-lysine capable to interact with lipid membranes. Binding of these peptides to lipid vesicles induced a strong fluorescence increase, which enabled to quantify the peptide-membrane interaction. Moreover, the dual emission of the label in these peptides correlated well with the depth of its insertion measured by the parallax quenching method. Thus, in melittin and magainin 2, which show deep insertion of their N-terminus, the label presented a dual emission corresponding to a low polar environment, while the environment of the poly-l-lysine N-terminus was rather polar, consistent with its location close to the bilayer surface. Using spectral deconvolution to distinguish the non-hydrated label species from the hydrated ones and two photon fluorescence microscopy to determine the probe orientation in giant vesicles, we found that the non-hydrated species were vertically oriented in the bilayer and constituted the best indicators for evaluating the depth of the peptide N-terminus in membranes. Thus, this label constitutes an interesting new tool for monitoring membrane binding and insertion of peptides.
Collapse
|
34
|
Vostrikov VV, Daily AE, Greathouse DV, Koeppe RE. Charged or aromatic anchor residue dependence of transmembrane peptide tilt. J Biol Chem 2010; 285:31723-30. [PMID: 20667827 PMCID: PMC2951244 DOI: 10.1074/jbc.m110.152470] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/15/2010] [Indexed: 01/13/2023] Open
Abstract
The membrane-spanning segments of integral membrane proteins often are flanked by aromatic or charged amino acid residues, which may "anchor" the transmembrane orientation. Single spanning transmembrane peptides such as those of the WALP family, acetyl-GWW(LA)(n)LWWA-amide, furthermore adopt a moderate average tilt within lipid bilayer membranes. To understand the anchor residue dependence of the tilt, we introduce Leu-Ala "spacers" between paired anchors and in some cases replace the outer tryptophans. The resulting peptides, acetyl-GX(2)ALW(LA)(6)LWLAX(22)A-amide, have Trp, Lys, Arg, or Gly in the two X positions. The apparent average orientations of the core helical sequences were determined in oriented phosphatidylcholine bilayer membranes of varying thickness using solid-state (2)H NMR spectroscopy. When X is Lys, Arg, or Gly, the direction of the tilt is essentially constant in different lipids and presumably is dictated by the tryptophans (Trp(5) and Trp(19)) that flank the inner helical core. The Leu-Ala spacers are no longer helical. The magnitude of the apparent helix tilt furthermore scales nicely with the bilayer thickness except when X is Trp. When X is Trp, the direction of tilt is less well defined in each phosphatidylcholine bilayer and varies up to 70° among 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine bilayer membranes. Indeed, the X = Trp case parallels earlier observations in which WALP family peptides having multiple Trp anchors show little dependence of the apparent tilt magnitude on bilayer thickness. The results shed new light on the interactions of arginine, lysine, tryptophan, and even glycine at lipid bilayer membrane interfaces.
Collapse
Affiliation(s)
- Vitaly V. Vostrikov
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Anna E. Daily
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Denise V. Greathouse
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Roger E. Koeppe
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
35
|
Monticelli L, Tieleman DP, Fuchs PF. Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations. Biophys J 2010; 99:1455-64. [PMID: 20816057 PMCID: PMC2931731 DOI: 10.1016/j.bpj.2010.05.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 05/17/2010] [Accepted: 05/21/2010] [Indexed: 01/11/2023] Open
Abstract
Orientation, dynamics, and packing of transmembrane helical peptides are important determinants of membrane protein structure, dynamics, and function. Because it is difficult to investigate these aspects by studying real membrane proteins, model transmembrane helical peptides are widely used. NMR experiments provide information on both orientation and dynamics of peptides, but they require that motional models be interpreted. Different motional models yield different interpretations of quadrupolar splittings (QS) in terms of helix orientation and dynamics. Here, we use coarse-grained (CG) molecular dynamics (MD) simulations to investigate the behavior of a well-known model transmembrane peptide, WALP23, under different hydrophobic matching/mismatching conditions. We compare experimental (2)H-NMR QS (directly measured in experiments), as well as helix tilt angle and azimuthal rotation (not directly measured), with CG MD simulation results. For QS, the agreement is significantly better than previously obtained with atomistic simulations, indicating that equilibrium sampling is more important than atomistic details for reproducing experimental QS. Calculations of helix orientation confirm that the interpretation of QS depends on the motional model used. Our simulations suggest that WALP23 can form dimers, which are more stable in an antiparallel arrangement. The origin of the preference for the antiparallel orientation lies not only in electrostatic interactions but also in better surface complementarity. In most cases, a mixture of monomers and antiparallel dimers provides better agreement with NMR data compared to the monomer and the parallel dimer. CG MD simulations allow predictions of helix orientation and dynamics and interpretation of QS data without requiring any assumption about the motional model.
Collapse
Affiliation(s)
- Luca Monticelli
- INSERM UMR-S 665, DSIMB, Paris, France
- Université Paris Diderot, UFR, Sciences du Vivant, Paris, France
- Institut National de Transfusion Sanguine, Paris, France
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Patrick F.J. Fuchs
- INSERM UMR-S 665, DSIMB, Paris, France
- Université Paris Diderot, UFR, Sciences du Vivant, Paris, France
- Institut National de Transfusion Sanguine, Paris, France
| |
Collapse
|
36
|
Holt A, Rougier L, Réat V, Jolibois F, Saurel O, Czaplicki J, Killian JA, Milon A. Order parameters of a transmembrane helix in a fluid bilayer: case study of a WALP peptide. Biophys J 2010; 98:1864-72. [PMID: 20441750 PMCID: PMC2862159 DOI: 10.1016/j.bpj.2010.01.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 01/19/2023] Open
Abstract
A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including (13)C and (15)N chemical shift anisotropies and (13)C-(15)N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides ((2)H, (13)C, and (15)N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21 degrees was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5 degrees previously determined from (2)H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error.
Collapse
Affiliation(s)
- Andrea Holt
- Utrecht University, Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | - Léa Rougier
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Université de Toulouse-Institut National des Sciences Appliquées-Université Paul Sabatier, LPCNO, Toulouse France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Valérie Réat
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Franck Jolibois
- Université de Toulouse-Institut National des Sciences Appliquées-Université Paul Sabatier, LPCNO, Toulouse France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Olivier Saurel
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Jerzy Czaplicki
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - J. Antoinette Killian
- Utrecht University, Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | - Alain Milon
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
37
|
Holt A, Killian JA. Orientation and dynamics of transmembrane peptides: the power of simple models. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:609-21. [PMID: 20020122 PMCID: PMC2841270 DOI: 10.1007/s00249-009-0567-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 02/02/2023]
Abstract
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.
Collapse
Affiliation(s)
- Andrea Holt
- Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands.
| | | |
Collapse
|
38
|
Profiling of dynamics in protein-lipid-water systems: a time-resolved fluorescence study of a model membrane protein with the label BADAN at specific membrane depths. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:647-56. [PMID: 19760185 PMCID: PMC2841254 DOI: 10.1007/s00249-009-0538-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 12/03/2022]
Abstract
Profiles of lipid-water bilayer dynamics were determined from picosecond time-resolved fluorescence spectra of membrane-embedded BADAN-labeled M13 coat protein. For this purpose, the protein was labeled at seven key positions. This places the label at well-defined locations from the water phase to the center of the hydrophobic acyl chain region of a phospholipid model membrane, providing us with a nanoscale ruler to map membranes. Analysis of the time-resolved fluorescence spectroscopic data provides the characteristic time constant for the twisting motion of the BADAN label, which is sensitive to the local flexibility of the protein–lipid environment. In addition, we obtain information about the mobility of water molecules at the membrane–water interface. The results provide an unprecedented nanoscale profiling of the dynamics and distribution of water in membrane systems. This information gives clear evidence that the actual barrier of membranes for ions and aqueous solvents is located at the region of carbonyl groups of the acyl chains.
Collapse
|