1
|
Chiolerio A, Chiappalone M, Ariano P, Bocchini S. Coupling Resistive Switching Devices with Neurons: State of the Art and Perspectives. Front Neurosci 2017; 11:70. [PMID: 28261048 PMCID: PMC5309244 DOI: 10.3389/fnins.2017.00070] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
Here we provide the state-of-the-art of bioelectronic interfacing between biological neuronal systems and artificial components, focusing the attention on the potentiality offered by intrinsically neuromorphic synthetic devices based on Resistive Switching (RS). Neuromorphic engineering is outside the scopes of this Perspective. Instead, our focus is on those materials and devices featuring genuine physical effects that could be sought as non-linearity, plasticity, excitation, and extinction which could be directly and more naturally coupled with living biological systems. In view of important applications, such as prosthetics and future life augmentation, a cybernetic parallelism is traced, between biological and artificial systems. We will discuss how such intrinsic features could reduce the complexity of conditioning networks for a more natural direct connection between biological and synthetic worlds. Putting together living systems with RS devices could represent a feasible though innovative perspective for the future of bionics.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia Torino, Italy
| | - Michela Chiappalone
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genova, Italy
| | - Paolo Ariano
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia Torino, Italy
| | - Sergio Bocchini
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia Torino, Italy
| |
Collapse
|
2
|
Selectivity of stimulus induced responses in cultured hippocampal networks on microelectrode arrays. Cogn Neurodyn 2016; 10:287-99. [PMID: 27468317 PMCID: PMC4947052 DOI: 10.1007/s11571-016-9380-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 11/08/2022] Open
Abstract
Sensory information can be encoded using the average firing rate and spike occurrence times in neuronal network responses to external stimuli. Decoding or retrieving stimulus characteristics from the response pattern generally implies that the corresponding neural network has a selective response to various input signals. The role of various spiking activity characteristics (e.g., spike rate and precise spike timing) for basic information processing was widely investigated on the level of neural populations but gave inconsistent evidence for particular mechanisms. Multisite electrophysiology of cultured neural networks grown on microelectrode arrays is a recently developed tool and currently an active research area. In this study, we analyzed the stimulus responses represented by network-wide bursts evoked from various spatial locations (electrodes). We found that the response characteristics, such as the burst initiation time and the spike rate, can be used to retrieve information about the stimulus location. The best selectivity in the response spiking pattern could be found for a small subpopulation of neurones (electrodes) at relatively short post-stimulus intervals. Such intervals were unique for each culture due to the non-uniform organization of the functional connectivity in the network during spontaneous development.
Collapse
|
3
|
le Feber J, Postma W, de Weerd E, Weusthof M, Rutten WLC. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays. Front Neurosci 2015; 9:412. [PMID: 26578869 PMCID: PMC4630305 DOI: 10.3389/fnins.2015.00412] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Cultured neurons on multi electrode arrays (MEAs) have been widely used to study various aspects of neuronal (network) functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to enable directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the designs' functionality, however, suggested room for further improvement. We designed a two chamber MEA aiming to create a unidirectional connection between the networks in both chambers (“emitting” and “receiving”). To achieve this unidirectionality, all interconnecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber). Visual inspection showed that axons predominantly grew through the channels in the promoted direction. This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (i.e., a one-chamber-only burst) in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber.
Collapse
Affiliation(s)
- Joost le Feber
- Biomedical Signals and Systems, University of Twente Enschede, Netherlands ; Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands
| | - Wybren Postma
- Biomedical Signals and Systems, University of Twente Enschede, Netherlands
| | - Eddy de Weerd
- BIOS Lab-on-a-Chip Group, University of Twente Enschede, Netherlands
| | - Marcel Weusthof
- Biomedical Signals and Systems, University of Twente Enschede, Netherlands
| | - Wim L C Rutten
- Biomedical Signals and Systems, University of Twente Enschede, Netherlands
| |
Collapse
|
4
|
le Feber J, Stoyanova II, Chiappalone M. Connectivity, excitability and activity patterns in neuronal networks. Phys Biol 2014; 11:036005. [DOI: 10.1088/1478-3975/11/3/036005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
NeuVision: A novel simulation environment to model spontaneous and stimulus-evoked activity of large-scale neuronal networks. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2013.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Synaptic potentiation facilitates memory-like attractor dynamics in cultured in vitro hippocampal networks. PLoS One 2013; 8:e57144. [PMID: 23526935 PMCID: PMC3603961 DOI: 10.1371/journal.pone.0057144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/17/2013] [Indexed: 12/18/2022] Open
Abstract
Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more “errant” spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic perturbations can account for the dynamical changes seen within the network.
Collapse
|
7
|
Di Lazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits 2013; 7:18. [PMID: 23407686 PMCID: PMC3570771 DOI: 10.3389/fncir.2013.00018] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
Although transcranial magnetic stimulation (TMS) activates a number of different neuron types in the cortex, the final output elicited in corticospinal neurones is surprisingly stereotyped. A single TMS pulse evokes a series of descending corticospinal volleys that are separated from each other by about 1.5 ms (i.e., ~670 Hz). This evoked descending corticospinal activity can be directly recorded by an epidural electrode placed over the high cervical cord. The earliest wave is thought to originate from the direct activation of the axons of fast-conducting pyramidal tract neurones (PTN) and is therefore termed "D" wave. The later waves are thought to originate from indirect, trans-synaptic activation of PTNs and are termed "I" waves. The anatomical and computational characteristics of a canonical microcircuit model of cerebral cortex composed of layer II and III and layer V excitatory pyramidal cells, inhibitory interneurons, and cortico-cortical and thalamo-cortical inputs can account for the main characteristics of the corticospinal activity evoked by TMS including its regular and rhythmic nature, the stimulus intensity-dependence and its pharmacological modulation. In this review we summarize present knowledge of the physiological basis of the effects of TMS of the human motor cortex describing possible interactions between TMS and simple canonical microcircuits of neocortex. According to the canonical model, a TMS pulse induces strong depolarization of the excitatory cells in the superficial layers of the circuit. This leads to highly synchronized recruitment of clusters of excitatory neurons, including layer V PTNs, and of inhibitory interneurons producing a high frequency (~670 Hz) repetitive discharge of the corticospinal axons. The role of the inhibitory circuits is crucial to entrain the firing of the excitatory networks to produce a high-frequency discharge and to control the number and magnitude of evoked excitatory discharge in layer V PTNs. In summary, simple canonical microcircuits of neocortex can explain activation of corticospinal neurons in human motor cortex by TMS.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Institute of Neurology, Campus Biomedico UniversityRome, Italy
- Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie-Institute for Clinical Brain Research, Eberhard Karls University TübingenTübingen, Germany
| |
Collapse
|
8
|
Abstract
By incorporating the known physiology of the spinal cord epidural activity evoked by single-pulse, paired-pulse, and repetitive transcranial magnetic stimulation (TMS) with the anatomical and computational characteristics of the canonical model of the cerebral cortex circuit, and composed of layer II and III and layer V excitatory pyramidal cells, inhibitory interneurons, corticocortical and thalamocortical inputs, the characteristics and nature of the corticospinal activity evoked by TMS including its regular and rhythmic nature, the dose dependence, and pharmacological modulation of the discharge might be explained elegantly. TMS inducing strong depolarization of the superficial excitatory cells of the circuit may lead to the recruitment of fully synchronized clusters of excitatory neurons, including layer V pyramidal tract neurons (PTNs), and inhibitory neurons producing a high-frequency (~670Hz) repetitive discharge of the corticospinal axons. The role of the inhibitory circuits is crucial to entrain the firing of the excitatory networks to produce a high-frequency discharge. The integrative properties of the circuit might also provide a good framework for interpretation of the changes in corticospinal activity produced by paired and repetitive TMS. The changes can be produced presynaptically to PTN cells or at the level of these cells, depending mainly on the intensity of magnetic stimuli.
Collapse
|
9
|
Tessadori J, Bisio M, Martinoia S, Chiappalone M. Modular neuronal assemblies embodied in a closed-loop environment: toward future integration of brains and machines. Front Neural Circuits 2012; 6:99. [PMID: 23248586 PMCID: PMC3520178 DOI: 10.3389/fncir.2012.00099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/18/2012] [Indexed: 11/13/2022] Open
Abstract
Behaviors, from simple to most complex, require a two-way interaction with the environment and the contribution of different brain areas depending on the orchestrated activation of neuronal assemblies. In this work we present a new hybrid neuro-robotic architecture based on a neural controller bi-directionally connected to a virtual robot implementing a Braitenberg vehicle aimed at avoiding obstacles. The robot is characterized by proximity sensors and wheels, allowing it to navigate into a circular arena with obstacles of different sizes. As neural controller, we used hippocampal cultures dissociated from embryonic rats and kept alive over Micro Electrode Arrays (MEAs) for 3-8 weeks. The developed software architecture guarantees a bi-directional exchange of information between the natural and the artificial part by means of simple linear coding/decoding schemes. We used two different kinds of experimental preparation: "random" and "modular" populations. In the second case, the confinement was assured by a polydimethylsiloxane (PDMS) mask placed over the surface of the MEA device, thus defining two populations interconnected via specific microchannels. The main results of our study are: (i) neuronal cultures can be successfully interfaced to an artificial agent; (ii) modular networks show a different dynamics with respect to random culture, both in terms of spontaneous and evoked electrophysiological patterns; (iii) the robot performs better if a reinforcement learning paradigm (i.e., a tetanic stimulation delivered to the network following each collision) is activated, regardless of the modularity of the culture; (iv) the robot controlled by the modular network further enhances its capabilities in avoiding obstacles during the short-term plasticity trial. The developed paradigm offers a new framework for studying, in simplified model systems, neuro-artificial bi-directional interfaces for the development of new strategies for brain-machine interaction.
Collapse
Affiliation(s)
- Jacopo Tessadori
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | | | | | | |
Collapse
|
10
|
I-wave origin and modulation. Brain Stimul 2012; 5:512-25. [DOI: 10.1016/j.brs.2011.07.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 12/16/2022] Open
|
11
|
Niedringhaus M, Chen X, Dzakpasu R, Conant K. MMPs and soluble ICAM-5 increase neuronal excitability within in vitro networks of hippocampal neurons. PLoS One 2012; 7:e42631. [PMID: 22912716 PMCID: PMC3418258 DOI: 10.1371/journal.pone.0042631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) mini excitatory post-synaptic currents (EPSCs). An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s) by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs) could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs) to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5) in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP) evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β1 integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β1 integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal excitability. They also support the possibility that MMP dependent shedding of specific synaptic CAMs can contribute to these effects.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
| | - Rhonda Dzakpasu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| |
Collapse
|
12
|
Leondopulos SS, Boehler MD, Wheeler BC, Brewer GJ. Chronic stimulation of cultured neuronal networks boosts low-frequency oscillatory activity at theta and gamma with spikes phase-locked to gamma frequencies. J Neural Eng 2012; 9:026015. [PMID: 22361724 DOI: 10.1088/1741-2560/9/2/026015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Slow wave oscillations in the brain are essential for coordinated network activity but have not been shown to self-organize in vitro. Here, the development of dissociated hippocampal neurons into an active network with oscillations on multi-electrode arrays was evaluated in the absence and presence of chronic external stimulation. Significant changes in signal power were observed in the range of 1-400 Hz with an increase in amplitude during bursts. Stimulation increased oscillatory activity primarily in the theta (4-11 Hz) and slow gamma (30-55 Hz) bands. Spikes were most prominently phase-locked to the slow gamma waves. Notably, the dissociated network self-organized to exhibit sustained delta, theta, beta and gamma oscillations without input from cortex, thalamus or organized pyramidal cell layers.
Collapse
Affiliation(s)
- Stathis S Leondopulos
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL 62794-9626, USA
| | | | | | | |
Collapse
|