1
|
Gonzalez BD, Forbrig E, Yao G, Kielb P, Mroginski MA, Hildebrandt P, Kozuch J. Cation Dependence of Enniatin B/Membrane-Interactions Assessed Using Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. Chempluschem 2024; 89:e202400159. [PMID: 38700478 DOI: 10.1002/cplu.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Enniatins are mycotoxins with well-known antibacterial, antifungal, antihelmintic and antiviral activity, which have recently come to attention as potential mitochondriotoxic anticancer agents. The cytotoxicity of enniatins is traced back to ionophoric properties, in which the cyclodepsipeptidic structure results in enniatin:cation-complexes of various stoichiometries proposed as membrane-active species. In this work, we employed a combination of surface-enhanced infrared absorption (SEIRA) spectroscopy, tethered bilayer lipid membranes (tBLMs) and density functional theory (DFT)-based computational spectroscopy to monitor the cation-dependence (Mz+=Na+, K+, Cs+, Li+, Mg2+, Ca2+) on the mechanism of enniatin B (EB) incorporation into membranes and identify the functionally relevant EBn : Mz+ complexes formed. We find that Na+ promotes a cooperative incorporation, modelled via an autocatalytic mechanism and mediated by a distorted 2 : 1-EB2 : Na+ complex. K+ (and Cs+) leads to a direct but less efficient insertion into membranes due to the adoption of "ideal" EB2 : K+ sandwich complexes. In contrast, the presence of Li+, Mg2+, and Ca2+ causes a (partial) extraction of EB from the membrane via the formation of "belted" 1 : 1-EB : Mz+ complexes, which screen the cationic charge less efficiently. Our results point to a relevance of the cation dependence for the transport into the malignant cells where the mitochondriotoxic anticancer activity is exerted.
Collapse
Affiliation(s)
- Barbara Daiana Gonzalez
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Enrico Forbrig
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, D-10623, Berlin, Germany
| | - Patrycja Kielb
- Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, D-53115, Bonn, Germany
- Transdisciplinary Research Area', Building Blocks of Matter and Fundamental Interactions (TRA Matter), Universität Bonn, D-53115, Bonn, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Jacek Kozuch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
2
|
Crea F, Vorkas A, Redlich A, Cruz R, Shi C, Trauner D, Lange A, Schlesinger R, Heberle J. Photoactivation of a Mechanosensitive Channel. Front Mol Biosci 2022; 9:905306. [PMID: 35836929 PMCID: PMC9273776 DOI: 10.3389/fmolb.2022.905306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Optogenetics in the conventional sense, i.e. the use of engineered proteins that gain their light sensitivity from naturally abundant chromophores, represents an exciting means to trigger and control biological activity by light. As an alternate approach, photopharmacology controls biological activity with the help of synthetic photoswitches. Here, we used an azobenzene-derived lipid analogue to optically activate the transmembrane mechanosensitive channel MscL which responds to changes in the lateral pressure of the lipid bilayer. In this work, MscL has been reconstituted in nanodiscs, which provide a native-like environment to the protein and a physical constraint to membrane expansion. We characterized this photomechanical system by FTIR spectroscopy and assigned the vibrational bands of the light-induced FTIR difference spectra of the trans and cis states of the azobenzene photolipid by DFT calculations. Differences in the amide I range indicated reversible conformational changes in MscL as a direct consequence of light switching. With the mediation of nanodiscs, we inserted the transmembrane protein in a free standing photoswitchable lipid bilayer, where electrophysiological recordings confirmed that the ion channel could be set to one of its sub-conducting states upon light illumination. In conclusion, a novel approach is presented to photoactivate and control cellular processes as complex and intricate as gravitropism and turgor sensing in plants, contractility of the heart, as well as sensing pain, hearing, and touch in animals.
Collapse
Affiliation(s)
- Fucsia Crea
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Antreas Vorkas
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Aoife Redlich
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Rubén Cruz
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Chaowei Shi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, United States
| | - Adam Lange
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Joachim Heberle,
| |
Collapse
|
3
|
Huang SH, Li J, Fan Z, Delgado R, Shvets G. Monitoring the effects of chemical stimuli on live cells with metasurface-enhanced infrared reflection spectroscopy. LAB ON A CHIP 2021; 21:3991-4004. [PMID: 34474459 PMCID: PMC8511245 DOI: 10.1039/d1lc00580d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.
Collapse
Affiliation(s)
- Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Jiaruo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Zhiyuan Fan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Robert Delgado
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| |
Collapse
|
4
|
Kelp G, Li J, Lu J, DiNapoli N, Delgado R, Liu C, Fan D, Dutta-Gupta S, Shvets G. Infrared spectroscopy of live cells from a flowing solution using electrically-biased plasmonic metasurfaces. LAB ON A CHIP 2020; 20:2136-2153. [PMID: 32406430 DOI: 10.1039/c9lc01054h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spectral cytopathology (SCP) is a promising label-free technique for diagnosing diseases and monitoring therapeutic outcomes using FTIR spectroscopy. In most cases, cells must be immobilized on a substrate prior to spectroscopic interrogation. This creates significant limitations for high throughput phenotypic whole-cell analysis, especially for the non-adherent cells. Here we demonstrate how metasurface-enhanced infrared reflection spectroscopy (MEIRS) can be applied to a continuous flow of live cell solution by applying AC voltage to metallic metasurfaces. By integrating metasurfaces with microfluidic delivery channels and attracting the cells to the metasurface via dielectrophoretic (DEP) force, we collect the infrared spectra of cells in real time within a minute, and correlate the spectra with simultaneously acquired images of the attracted cells. The resulting DEP-MEIRS technique paves the way for rapid SCP of complex cell-containing body fluids with low cell concentrations, and for the development of a wide range of label-free liquid biopsies.
Collapse
Affiliation(s)
- Glen Kelp
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
6
|
Quinn SD, Srinivasan S, Gordon JB, He W, Carraway KL, Coleman MA, Schlau-Cohen GS. Single-Molecule Fluorescence Detection of the Epidermal Growth Factor Receptor in Membrane Discs. Biochemistry 2019; 58:286-294. [PMID: 29553754 PMCID: PMC6173994 DOI: 10.1021/acs.biochem.8b00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The epidermal growth factor receptor (EGFR) is critical to normal cellular signaling pathways. Moreover, it has been implicated in a range of pathologies, including cancer. As a result, it is the primary target of many anticancer drugs. One limitation to the design and development of these drugs has been the lack of molecular-level information about the interactions and conformational dynamics of EGFR. To overcome this limitation, this work reports the construction and characterization of functional, fluorescently labeled, and full-length EGFR in model membrane nanolipoprotein particles (NLPs) for in vitro fluorescence studies. To demonstrate the utility of the system, we investigate ATP-EGFR interactions. We observe that ATP binds at the catalytic site providing a means to measure a range of distances between the catalytic site and the C-terminus via Förster resonance energy transfer (FRET). These ATP-based experiments suggest a range of conformations of the C-terminus that may be a function of the phosphorylation state for EGFR. This work is a proof-of-principle demonstration of single-molecule studies as a noncrystallographic assay for EGFR interactions in real-time and under near-physiological conditions. The diverse nature of EGFR interactions means that new tools at the molecular level have the potential to significantly enhance our understanding of receptor pathology and are of utmost importance for cancer-related drug discovery.
Collapse
Affiliation(s)
- Steven D. Quinn
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Jesse B. Gordon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Kermit L. Carraway
- University of California Davis School of Medicine, Biochemistry and Molecular Medicine, Sacramento, California, USA
| | - Matthew A. Coleman
- Lawrence Livermore National Laboratory, Livermore, California, USA
- University of California Davis School of Medicine, Radiation Oncology, Sacramento, California, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| |
Collapse
|
7
|
Gutiérrez-Sanz O, Forbrig E, Batista AP, Pereira MM, Salewski J, Mroginski MA, Götz R, De Lacey AL, Kozuch J, Zebger I. Catalytic Activity and Proton Translocation of Reconstituted Respiratory Complex I Monitored by Surface-Enhanced Infrared Absorption Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5703-5711. [PMID: 29553272 DOI: 10.1021/acs.langmuir.7b04057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Respiratory complex I (CpI) is a key player in the way organisms obtain energy, being an energy transducer, which couples nicotinamide adenine dinucleotide (NADH)/quinone oxidoreduction with proton translocation by a mechanism that remains elusive so far. In this work, we monitored the function of CpI in a biomimetic, supported lipid membrane system assembled on a 4-aminothiophenol (4-ATP) self-assembled monolayer by surface-enhanced infrared absorption spectroscopy. 4-ATP serves not only as a linker molecule to a nanostructured gold surface but also as pH sensor, as indicated by concomitant density functional theory calculations. In this way, we were able to monitor NADH/quinone oxidoreduction-induced transmembrane proton translocation via the protonation state of 4-ATP, depending on the net orientation of CpI molecules induced by two complementary approaches. An associated change of the amide I/amide II band intensity ratio indicates conformational modifications upon catalysis which may involve movements of transmembrane helices or other secondary structural elements, as suggested in the literature [ Di Luca , Proc. Natl. Acad. Sci. U.S.A. , 2017 , 114 , E6314 - E6321 ].
Collapse
Affiliation(s)
- Oscar Gutiérrez-Sanz
- Instituto de Catalisis y Petroleoquimica , CSIC c/ Marie Curie 2 , 28049 Madrid , Spain
| | - Enrico Forbrig
- Institut für Chemie, PC 14 , Technische Universität Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica-António Xavier , Universidade Nova de Lisboa , Av. da Republica EAN , 2780-157 Oeiras , Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier , Universidade Nova de Lisboa , Av. da Republica EAN , 2780-157 Oeiras , Portugal
| | - Johannes Salewski
- Institut für Chemie, PC 14 , Technische Universität Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany
| | - Maria A Mroginski
- Institut für Chemie, PC 14 , Technische Universität Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany
| | - Robert Götz
- Institut für Chemie, PC 14 , Technische Universität Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany
| | - Antonio L De Lacey
- Instituto de Catalisis y Petroleoquimica , CSIC c/ Marie Curie 2 , 28049 Madrid , Spain
| | - Jacek Kozuch
- Institut für Chemie, PC 14 , Technische Universität Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany
| | - Ingo Zebger
- Institut für Chemie, PC 14 , Technische Universität Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany
| |
Collapse
|
8
|
Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion. Sci Rep 2016; 6:26718. [PMID: 27216789 PMCID: PMC4877634 DOI: 10.1038/srep26718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023] Open
Abstract
Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.
Collapse
|
9
|
Baumann A, Kerruth S, Fitter J, Büldt G, Heberle J, Schlesinger R, Ataka K. In-Situ Observation of Membrane Protein Folding during Cell-Free Expression. PLoS One 2016; 11:e0151051. [PMID: 26978519 PMCID: PMC4792443 DOI: 10.1371/journal.pone.0151051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando) at molecular resolution.
Collapse
Affiliation(s)
- Axel Baumann
- Forschungszentrum Jülich, Institute of Complex Systems, Molecular Biophysics (ICS-5), 52425 Jülich, Germany
| | - Silke Kerruth
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg Fitter
- Forschungszentrum Jülich, Institute of Complex Systems, Molecular Biophysics (ICS-5), 52425 Jülich, Germany
- Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany
| | - Georg Büldt
- Forschungszentrum Jülich, Institute of Complex Systems, Molecular Biophysics (ICS-5), 52425 Jülich, Germany
- Moscow Institute of Physics and Technology, Laboratory for Advanced Studies of Membrane Proteins, 141700 Dolgoprudniy, Russia
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Genetic Biophysics, Arnimallee 14, 14195 Berlin, Germany
- * E-mail: (KA); (RS)
| | - Kenichi Ataka
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
- * E-mail: (KA); (RS)
| |
Collapse
|
10
|
Limaj O, Etezadi D, Wittenberg NJ, Rodrigo D, Yoo D, Oh SH, Altug H. Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes. NANO LETTERS 2016; 16:1502-8. [PMID: 26761392 DOI: 10.1021/acs.nanolett.5b05316] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this work, we present an infrared plasmonic biosensor for chemical-specific detection and monitoring of biomimetic lipid membranes in a label-free and real-time fashion. Lipid membranes constitute the primary biological interface mediating cell signaling and interaction with drugs and pathogens. By exploiting the plasmonic field enhancement in the vicinity of engineered and surface-modified nanoantennas, the proposed biosensor is able to capture the vibrational fingerprints of lipid molecules and monitor in real time the formation kinetics of planar biomimetic membranes in aqueous environments. Furthermore, we show that this plasmonic biosensor features high-field enhancement extending over tens of nanometers away from the surface, matching the size of typical bioassays while preserving high sensitivity.
Collapse
Affiliation(s)
- Odeta Limaj
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Dordaneh Etezadi
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel Rodrigo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
| |
Collapse
|
11
|
Ataka K, Stripp ST, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2283-93. [PMID: 23816441 DOI: 10.1016/j.bbamem.2013.04.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/05/2013] [Accepted: 04/28/2013] [Indexed: 12/15/2022]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Kenichi Ataka
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|
12
|
Distortion of the amide-I and -II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Vaish A, Silin V, Walker ML, Steffens KL, Krueger S, Yeliseev AA, Gawrisch K, Vanderah DJ. A generalized strategy for immobilizing uniformly oriented membrane proteins at solid interfaces. Chem Commun (Camb) 2013; 49:2685-7. [DOI: 10.1039/c3cc00077j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
WANG LX, JIANG XE. Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60556-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Ranaghan MJ, Schwall CT, Alder NN, Birge RR. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 2011; 133:18318-27. [PMID: 21951206 PMCID: PMC3218432 DOI: 10.1021/ja2070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.
Collapse
Affiliation(s)
- Matthew J. Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Christine T. Schwall
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Robert R. Birge
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| |
Collapse
|
16
|
Ley C, Holtmann D, Mangold KM, Schrader J. Immobilization of histidine-tagged proteins on electrodes. Colloids Surf B Biointerfaces 2011; 88:539-51. [PMID: 21840689 DOI: 10.1016/j.colsurfb.2011.07.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
The development of new enzyme immobilization techniques that do not affect catalytic activity or conformation of a protein is an important research task in biotechnology including biosensor applications and heterogeneous reaction systems. One of the most promising approaches for controlled protein immobilization is based on the immobilized metal ion affinity chromatography (IMAC) principle originally developed for protein purification. Here we describe the current status and future perspectives of immobilization of His-tagged proteins on electrode surfaces. Recombinant proteins comprising histidine-tags or histidine rich native proteins have a strong affinity to transition metal ions. For metal ion immobilization at the electrode surface different matrices can be used such as self-assembled monolayers or conductive polymers. This specific technique allows a reversible immobilization of histidine-tagged proteins at electrodes in a defined orientation which is an important prerequisite for efficient electron transfer between the electrode and the biomolecule. Any application requiring immobilized biocatalysts on electrodes can make use of this immobilization approach, making future biosensors and biocatalytic technologies more sensitive, simpler, reusable and less expensive while only requiring mild enzyme modifications.
Collapse
Affiliation(s)
- Claudia Ley
- Biochemical Engineering Group, Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
17
|
Banerjee S, Nimigean CM. Non-vesicular transfer of membrane proteins from nanoparticles to lipid bilayers. ACTA ACUST UNITED AC 2011; 137:217-23. [PMID: 21282400 PMCID: PMC3032376 DOI: 10.1085/jgp.201010558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Discoidal lipoproteins are a novel class of nanoparticles for studying membrane proteins (MPs) in a soluble, native lipid environment, using assays that have not been traditionally applied to transmembrane proteins. Here, we report the successful delivery of an ion channel from these particles, called nanoscale apolipoprotein-bound bilayers (NABBs), to a distinct, continuous lipid bilayer that will allow both ensemble assays, made possible by the soluble NABB platform, and single-molecule assays, to be performed from the same biochemical preparation. We optimized the incorporation and verified the homogeneity of NABBs containing a prototypical potassium channel, KcsA. We also evaluated the transfer of KcsA from the NABBs to lipid bilayers using single-channel electrophysiology and found that the functional properties of the channel remained intact. NABBs containing KcsA were stable, homogeneous, and able to spontaneously deliver the channel to black lipid membranes without measurably affecting the electrical properties of the bilayer. Our results are the first to demonstrate the transfer of a MP from NABBs to a different lipid bilayer without involving vesicle fusion.
Collapse
Affiliation(s)
- Sourabh Banerjee
- Department of Anesthesiology and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | | |
Collapse
|
18
|
Fu L, Liu J, Yan ECY. Chiral Sum Frequency Generation Spectroscopy for Characterizing Protein Secondary Structures at Interfaces. J Am Chem Soc 2011; 133:8094-7. [DOI: 10.1021/ja201575e] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Fu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jian Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Bricarello DA, Smilowitz JT, Zivkovic AM, German JB, Parikh AN. Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures. ACS NANO 2011; 5:42-57. [PMID: 21182259 DOI: 10.1021/nn103098m] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of biology's most pervasive nanostructures, the phospholipid membrane, represents an ideal scaffold for a host of nanotechnology applications. Whether engineering biomimetic technologies or designing therapies to interface with the cell, this adaptable membrane can provide the necessary molecular-level control of membrane-anchored proteins, glycopeptides, and glycolipids. If appropriately prepared, these components can replicate in vitro or influence in vivo essential living processes such as signal transduction, mass transport, and chemical or energy conversion. To satisfy these requirements, a lipid-based, synthetic nanoscale architecture with molecular-level tunability is needed. In this regard, discrete lipid particles, including reconstituted high density lipoprotein (HDL), have emerged as a versatile and elegant solution. Structurally diverse, native biological HDLs exist as discoidal lipid bilayers of 5-8 nm diameter and lipid monolayer-coated spheres 10-15 nm in diameter, all belted by a robust scaffolding protein. These supramolecular assemblies can be reconstituted using simple self-assembly methods to incorporate a broad range of amphipathic molecular constituents, natural or artificial, and provide a generic platform for stabilization and transport of amphipathic and hydrophobic elements capable of docking with targets at biological or inorganic surfaces. In conjunction with top-down or bottom-up engineering approaches, synthetic HDL can be designed, arrayed, and manipulated for a host of applications including biochemical analyses and fundamental studies of molecular structure. Also highly biocompatible, these assemblies are suitable for medical diagnostics and therapeutics. The collection of efforts reviewed here focuses on laboratory methods by which synthetic HDLs are produced, the advantages conferred by their nanoscopic dimension, and current and emerging applications.
Collapse
Affiliation(s)
- Daniel A Bricarello
- Department of Applied Science, University of California-Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|