1
|
Kabtiyal P, Robbins A, Jergens E, Castro CE, Winter JO, Poirier MG, Johnston-Halperin E. Localized Plasmonic Heating for Single-Molecule DNA Rupture Measurements in Optical Tweezers. NANO LETTERS 2024; 24:3097-3103. [PMID: 38417053 DOI: 10.1021/acs.nanolett.3c04848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
To date, studies on the thermodynamic and kinetic processes that underlie biological function and nanomachine actuation in biological- and biology-inspired molecular constructs have primarily focused on photothermal heating of ensemble systems, highlighting the need for probes that are localized within the molecular construct and capable of resolving single-molecule response. Here we present an experimental demonstration of wavelength-selective, localized heating at the single-molecule level using the surface plasmon resonance of a 15 nm gold nanoparticle (AuNP). Our approach is compatible with force-spectroscopy measurements and can be applied to studies of the single-molecule thermodynamic properties of DNA origami nanomachines as well as biomolecular complexes. We further demonstrate wavelength selectivity and establish the temperature dependence of the reaction coordinate for base-pair disruption in the shear-rupture geometry, demonstrating the utility and flexibility of this approach for both fundamental studies of local (nanometer-scale) temperature gradients and rapid and multiplexed nanomachine actuation.
Collapse
Affiliation(s)
- Prerna Kabtiyal
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariel Robbins
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elizabeth Jergens
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carlos E Castro
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica O Winter
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
2
|
Chen T, Gao F, Tan YW. Transition Time Determination of Single-Molecule FRET Trajectories via Wasserstein Distance Analysis in Steady-State Variations in smFRET (WAVE). J Phys Chem B 2023; 127:7819-7828. [PMID: 37672727 DOI: 10.1021/acs.jpcb.3c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Many biological molecules respond to external stimuli that can cause their conformational states to shift from one steady state to another. Single-molecule FRET (Fluorescence Resonance Energy Transfer) is of particular interest to not only define the steady-state conformational ensemble usually averaged out in the ensemble of molecules but also characterize the dynamics of biomolecules. To study steady-state transitions, i.e., non-equilibrium transitions, a data analysis methodology is necessary to analyze single-molecule FRET photon trajectories, which contain mixtures of contributions from two steady-state statuses and include non-equilibrium transitions. In this study, we introduce a novel methodology called WAVE (Wasserstein distance Analysis in steady-state Variations in smFRET) to detect and locate non-equilibrium transition positions in FRET trajectories. Our method first utilizes a combined STaSI-HMM (Stepwise Transitions with State Inference Hidden Markov Model) algorithm to convert the original FRET trajectories into discretized trajectories. We then apply Maximum Wasserstein Distance analysis to differentiate the FRET state compositions of the fitting trajectories before and after the non-equilibrium transition. Forward and backward algorithms, based on the Minimum Description Length (MDL) principle, are used to find the refined positions of the non-equilibrium transitions. This methodology allows us to observe changes in experimental conditions in chromophore-tagged biomolecules or vice versa.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China
| | - Fengnan Gao
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
- School of Data Science, Fudan University, Shanghai 200433, China
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
4
|
Hung MS, Chen CP. Laser-induced heating for in situ DNA replication and detection in microchannels. IET Nanobiotechnol 2018; 12:841-845. [PMID: 30104460 DOI: 10.1049/iet-nbt.2017.0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study proposes a method for in situ local deoxyribonucleic acid (DNA) replication and detection in a long DNA strand through laser-induced heating and strong avidin-biotin binding. To achieve the target DNA replication, dielectrophoresis was generated to stretch and immobilise DNA strands on both ends of the electrode. Subsequently, local DNA sequences were replicated using thermal cycles generated by laser-induced heating. Replicated double-stranded DNA products were captured in situ on a solid surface and detected using the fluorescence intensity of quantum dots (Qdots). The results revealed that after six laser-induced thermal cycles, the replicated local DNA sequence could be detected by analysing the difference between Qdot fluorescent intensity before and after replication. The proposed method is expected to improve the efficiency of biosample gene sequence analysis.
Collapse
Affiliation(s)
- Min-Sheng Hung
- Department of Biomechatronic Engineering, National Chiayi University, No. 300 Syuefu Road, Chiayi City 60004, Taiwan.
| | - Chih-Pin Chen
- High Power Opto Incorporation, No. 8, Keyuan 3rd Rd, Xitun Dist., Taichung City 40763, Taiwan
| |
Collapse
|
5
|
Holmstrom ED, Nesbitt DJ. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer. Annu Rev Phys Chem 2017; 67:441-65. [PMID: 27215819 DOI: 10.1146/annurev-physchem-040215-112544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| |
Collapse
|
6
|
Börner R, Kowerko D, Miserachs HG, Schaffer MF, Sigel RK. Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Hung MS, Ho CC, Chen CP. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:87003. [PMID: 27533446 DOI: 10.1117/1.jbo.21.8.087003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/27/2016] [Indexed: 05/05/2023]
Abstract
This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin–avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.
Collapse
Affiliation(s)
- Min-Sheng Hung
- National Chiayi University, Department of Biomechatronic Engineering, No. 300 Syuefu Road, Chiayi 60004, Taiwan
| | - Chia-Chin Ho
- Chip Win Technology Co., Ltd., Biomedical and Advanced Systems Integration, No. 18 Sec. 2, Seng Yi Road, Zhubei City, Hsinchu 30261, Taiwan
| | - Chih-Pin Chen
- National Chiayi University, Department of Biomechatronic Engineering, No. 300 Syuefu Road, Chiayi 60004, Taiwan
| |
Collapse
|
8
|
Havrila M, Zgarbová M, Jurečka P, Banáš P, Krepl M, Otyepka M, Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J Phys Chem B 2015; 119:15176-90. [DOI: 10.1021/acs.jpcb.5b08876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Havrila
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Platkov M, Gruebele M. Periodic and stochastic thermal modulation of protein folding kinetics. J Chem Phys 2015; 141:035103. [PMID: 25053342 DOI: 10.1063/1.4887360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.
Collapse
Affiliation(s)
- Max Platkov
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Departments of Chemistry and Physics and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Effect of Laser-Induced Heating on Raman Measurement within a Silicon Microfluidic Channel. MICROMACHINES 2015. [DOI: 10.3390/mi6070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Widom JR, Dhakal S, Heinicke LA, Walter NG. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update. Arch Toxicol 2014; 88:1965-85. [PMID: 25212907 PMCID: PMC4615698 DOI: 10.1007/s00204-014-1357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | | | | | | |
Collapse
|
12
|
Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics. Biophys J 2014; 106:220-31. [PMID: 24411254 DOI: 10.1016/j.bpj.2013.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/19/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023] Open
Abstract
Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10(-11) liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20-100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (<10 bp) and long (>10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation.
Collapse
|
13
|
Mundigala H, Michaux JB, Feig AL, Ennifar E, Rueda D. HIV-1 DIS stem loop forms an obligatory bent kissing intermediate in the dimerization pathway. Nucleic Acids Res 2014; 42:7281-9. [PMID: 24813449 PMCID: PMC4066764 DOI: 10.1093/nar/gku332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The HIV-1 dimerization initiation sequence (DIS) is a conserved palindrome in the apical loop of a conserved hairpin motif in the 5′-untranslated region of its RNA genome. DIS hairpin plays an important role in genome dimerization by forming a ‘kissing complex’ between two complementary hairpins. Understanding the kinetics of this interaction is key to exploiting DIS as a possible human immunodeficiency virus (HIV) drug target. Here, we present a single-molecule Förster resonance energy transfer (smFRET) study of the dimerization reaction kinetics. Our data show the real-time formation and dissociation dynamics of individual kissing complexes, as well as the formation of the mature extended duplex complex that is ultimately required for virion packaging. Interestingly, the single-molecule trajectories reveal the presence of a previously unobserved bent intermediate required for extended duplex formation. The universally conserved A272 is essential for the formation of this intermediate, which is stabilized by Mg2+, but not by K+ cations. We propose a 3D model of a possible bent intermediate and a minimal dimerization pathway consisting of three steps with two obligatory intermediates (kissing complex and bent intermediate) and driven by Mg2+ ions.
Collapse
Affiliation(s)
- Hansini Mundigala
- Department of Chemistry, Wayne State University, Detroit, MI 48236, USA
| | | | - Andrew L Feig
- Department of Chemistry, Wayne State University, Detroit, MI 48236, USA
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, F-67084 Strasbourg, France
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48236, USA Department of Medicine, Section of Virology, Imperial College, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Center, Imperial College, London W12 0NN, UK
| |
Collapse
|
14
|
Paudel B, Rueda D. RNA folding dynamics using laser-assisted single-molecule refolding. Methods Mol Biol 2014; 1086:289-307. [PMID: 24136611 DOI: 10.1007/978-1-62703-667-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
RNA folding pathways can be complex and even include kinetic traps or misfolded intermediates that can be slow to resolve. Characterizing these pathways is critical to understanding how RNA molecules acquire their biological function. We have previously developed a novel approach to help characterize such misfolded intermediates. Laser-assisted single-molecule refolding (LASR) is a powerful technique that combines temperature-jump (T-jump) kinetics with single-molecule detection. In a typical LASR experiment, the temperature is rapidly increased and conformational dynamics are characterized, in real-time, at the single-molecule level using single-molecule fluorescence resonance energy transfer (smFRET). Here, we provide detailed protocols for performing LASR experiments including sample preparation, temperature calibration, and data analysis.
Collapse
Affiliation(s)
- Bishnu Paudel
- Department of Medicine, Section of Virology, Imperial College, London, UK
| | | |
Collapse
|
15
|
Koirala D, Punnoose JA, Shrestha P, Mao H. Yoctoliter thermometry for single-molecule investigations: a generic bead-on-a-tip temperature-control module. Angew Chem Int Ed Engl 2014; 53:3470-4. [PMID: 24596309 DOI: 10.1002/anie.201310172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/06/2014] [Indexed: 11/10/2022]
Abstract
A new temperature-jump (T-jump) strategy avoids photo-damage of individual molecules by focusing a low-intensity laser on a black microparticle at the tip of a capillary. The black particle produces an efficient photothermal effect that enables a wide selection of lasers with powers in the milliwatt range to achieve a T-jump of 65 °C within milliseconds. To measure the temperature in situ in single-molecule experiments, the temperature-dependent mechanical unfolding of a single DNA hairpin molecule was monitored by optical tweezers within a yoctoliter volume. Using this bead-on-a-tip module and the robust single-molecule thermometer, full thermodynamic landscapes for the unfolding of this DNA hairpin were retrieved. These approaches are likely to provide powerful tools for the microanalytical investigation of dynamic processes with a combination of T-jump and single-molecule techniques.
Collapse
Affiliation(s)
- Deepak Koirala
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA)
| | | | | | | |
Collapse
|
16
|
Koirala D, Punnoose JA, Shrestha P, Mao H. Yoctoliter Thermometry for Single-Molecule Investigations: A Generic Bead-on-a-Tip Temperature-Control Module. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Stephenson W, Keller S, Santiago R, Albrecht JE, Asare-Okai PN, Tenenbaum SA, Zuker M, Li PTX. Combining temperature and force to study folding of an RNA hairpin. Phys Chem Chem Phys 2014; 16:906-17. [DOI: 10.1039/c3cp52042k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Hung MS, Huang YT. Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7402-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Hung MS, Kurosawa O, Washizu M. Single DNA molecule denaturation using laser-induced heating. Mol Cell Probes 2012; 26:107-12. [PMID: 22465742 DOI: 10.1016/j.mcp.2012.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/08/2012] [Accepted: 03/18/2012] [Indexed: 11/24/2022]
Abstract
This paper proposes targeted in situ denaturation through laser-induced heating to partially amplify relevant sequences from a long DNA strand. It uses 5 kb of DNA as a sample, labeling both strands with quantum dots, with one strand immobilized on a solid surface. We irradiated a targeted DNA sequence with a focused infrared laser to elevate its temperature, monitoring the process by microscope. The denaturation was detected in real time by separating quantum dots on each strand. Results showed that complete separation of the strands occurred within a few seconds of laser irradiation, which raised the temperature to approximately 90 °C.
Collapse
Affiliation(s)
- Min-Sheng Hung
- Department of Biomechatronic Engineering, National Chiayi University, No. 300 Syuefu Road, Chiayi 600, Taiwan.
| | | | | |
Collapse
|
20
|
Thermodynamic and kinetic analysis of an RNA kissing interaction and its resolution into an extended duplex. Biophys J 2012; 102:1097-107. [PMID: 22404932 DOI: 10.1016/j.bpj.2011.12.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
Kissing hairpin interactions form when the loop residues of two hairpins have Watson-Crick complementarity. In a unimolecular context, kissing interactions are important for tertiary folding and pseudoknot formation, whereas in a bimolecular context, they provide a basis for molecular recognition. In some cases, kissing complexes can be a prelude to strand displacement reactions where the two hairpins resolve to form a stable extended intermolecular duplex. The kinetics and thermodynamics of kissing-complex formation and their subsequent strand-displacement reactions are poorly understood. Here, biophysical techniques including isothermal titration calorimetry, surface plasmon resonance, and single-molecule fluorescence have been employed to probe the factors that govern the stability of kissing complexes and their subsequent structural rearrangements. We show that the general understanding of RNA duplex formation can be extended to kissing complexes but that kissing complexes display an unusual level of stability relative to simple duplexes of the same sequence. These interactions form and break many times at room temperature before becoming committed to a slow, irreversible forward transition to the strand-displaced form. Furthermore, using smFRET we show that the primary difference between stable and labile kissing complexes is based almost completely on their off rates. Both stable and labile complexes form at the same rate within error, but less stable species dissociate rapidly, allowing us to understand how these complexes can help generate specificity along a folding pathway or during a gene regulation event.
Collapse
|
21
|
Hoskins AA, Gelles J, Moore MJ. New insights into the spliceosome by single molecule fluorescence microscopy. Curr Opin Chem Biol 2011; 15:864-70. [PMID: 22057211 DOI: 10.1016/j.cbpa.2011.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 11/17/2022]
Abstract
Splicing is an essential eukaryotic process in which introns are excised from precursors to messenger RNAs and exons ligated together. This reaction is catalyzed by a multi-MegaDalton machine called the spliceosome, composed of 5 small nuclear RNAs (snRNAs) and a core set of ∼100 proteins minimally required for activity. Because of the spliceosome's size, its low abundance in cellular extracts, and its highly dynamic assembly pathway, analysis of the kinetics of splicing and the conformational rearrangements occurring during spliceosome assembly and disassembly has proven extraordinarily challenging. Here, we review recent progress in combining chemical biology methodologies with single molecule fluorescence techniques to provide a window into splicing in real time. These methods complement ensemble measurements of splicing in vivo and in vitro to facilitate kinetic dissection of pre-mRNA splicing.
Collapse
MESH Headings
- Biotin/chemistry
- Biotin/metabolism
- Exons
- Fluorescence Resonance Energy Transfer
- Fluorescent Dyes/analysis
- Fluorescent Dyes/chemistry
- Introns
- Microscopy, Fluorescence/methods
- RNA Precursors/analysis
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Splicing/genetics
- RNA, Fungal/analysis
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Small Nuclear/analysis
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/analysis
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Staining and Labeling/methods
- Streptavidin/chemistry
- Streptavidin/metabolism
Collapse
Affiliation(s)
- Aaron A Hoskins
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | | | | |
Collapse
|
22
|
Holmstrom ED, Nesbitt DJ. Real-Time Infrared Overtone Laser Control of Temperature in Picoliter H(2)O Samples: "Nanobathtubs" for Single Molecule Microscopy. J Phys Chem Lett 2010; 1:2264-2268. [PMID: 21814589 PMCID: PMC3148086 DOI: 10.1021/jz100663e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An approach for high spatiotemporal control of aqueous sample temperatures in confocal microscopy is reported. This technique exploits near-IR diode-laser illumination to locally heat picoliter volumes of water via first-overtone excitation in the OH-stretch manifold. A thin water cell after the objective resonantly removes any residual IR light from the detection system, allowing for continuous observation of single-molecule fluorescence throughout the heating event. This technique is tested quantitatively by reproducing single-molecule RNA folding results obtained from "bulk" stage heating measurements. Calibration of sample temperatures is obtained from time-correlated single-photon counting studies of Rhodamine B fluorescence decay. We obtain an upper limit to the heating response time (τ(heat) < 20 ms) consistent with even faster estimates (τ(heat) ≈ 0.25 ms) based on laser spot size, H(2)O heat capacit,y and absorption cross section. This combination of fast, noncontact heating of picoliter volumes provides new opportunities for real-time thermodynamic/kinetic studies at the single-molecule level.
Collapse
Affiliation(s)
| | - David J. Nesbitt
- Corresponding Author: To whom correspondence should be addressed. . Phone: (303) 492- 8857. Fax: (303) 493- 5235
| |
Collapse
|