1
|
Halma MTJ, Xu L. Life under tension: the relevance of force on biological polymers. BIOPHYSICS REPORTS 2024; 10:48-56. [PMID: 38737478 PMCID: PMC11079598 DOI: 10.52601/bpr.2023.230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 05/14/2024] Open
Abstract
Optical tweezers have elucidated numerous biological processes, particularly by enabling the precise manipulation and measurement of tension. One question concerns the biological relevance of these experiments and the generalizability of these experiments to wider biological systems. Here, we categorize the applicability of the information garnered from optical tweezers in two distinct categories: the direct relevance of tension in biological systems, and what experiments under tension can tell us about biological systems, while these systems do not reach the same tension as the experiment, still, these artificial experimental systems reveal insights into the operations of biological machines and life processes.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
- LUMICKS B. V., 1081 HV, Amsterdam, the Netherlands
| | - Longfu Xu
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Centola M, Poppleton E, Ray S, Centola M, Welty R, Valero J, Walter NG, Šulc P, Famulok M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. NATURE NANOTECHNOLOGY 2024; 19:226-236. [PMID: 37857824 PMCID: PMC10873200 DOI: 10.1038/s41565-023-01516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.
Collapse
Affiliation(s)
- Mathias Centola
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | | | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | - Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
- Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Århus, Denmark
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA.
| | - Petr Šulc
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany.
| |
Collapse
|
3
|
Jing X, Loskot P, Yu J. How does supercoiling regulation on a battery of RNA polymerases impact on bacterial transcription bursting? Phys Biol 2018; 15:066007. [PMID: 30091721 DOI: 10.1088/1478-3975/aad933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcription plays an essential role in gene expression. The transcription bursting in bacteria has been suggested to be regulated by positive supercoiling accumulation in front of a transcribing RNA polymerase (RNAP) together with gyrase binding on DNA to release the supercoiling. In this work, we study the supercoiling regulation in the case of a battery of RNAPs working together on DNA by constructing a multi-state quantitative model, which allows gradual and stepwise supercoiling accumulation and release in the RNAP transcription. We solved for transcription characteristics under the multi-state bursting model for a single RNAP transcription, and then simulated for a battery of RNAPs on DNA with T7 and Escherichia coli RNAP types of traffic, respectively, probing both the average and fluctuation impacts of the supercoiling regulation. Our studies show that due to the supercoiling accumulation and release, the number of RNAP molecules loaded onto the DNA vary significantly along time in the traffic condition. Though multiple RNAPs in transcription promote the mRNA production, they also enhance the supercoiling accumulation to suppress the production. In particular, the fluctuations of the mRNA transcripts become highly pronounced for a battery of RNAPs transcribing together under the supercoiling regulation, especially for a long process of transcription elongation. In such an elongation process, though a single RNAP can work at a high duty ratio, multiple RNAPs are hardly able to do so. Our multi-state model thus provides a systematical characterization of the quantitative features of the bacterial transcription bursting; it also supports improved physical examinations on top of this general modeling framework.
Collapse
Affiliation(s)
- Xiaobo Jing
- Beijing Computational Science Research Center, 100193, Beijing, People's Republic of China
| | - Pavel Loskot
- Beijing Computational Science Research Center, 100193, Beijing, People's Republic of China
- Systems and Process Engineering Centre, Swansea University, Swansea, SA28PP, United Kingdom
| | - Jin Yu
- Beijing Computational Science Research Center, 100193, Beijing, People's Republic of China
| |
Collapse
|
4
|
Marchetti M, Malinowska A, Heller I, Wuite GJL. How to switch the motor on: RNA polymerase initiation steps at the single-molecule level. Protein Sci 2017; 26:1303-1313. [PMID: 28470684 DOI: 10.1002/pro.3183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 11/06/2022]
Abstract
RNA polymerase (RNAP) is the central motor of gene expression since it governs the process of transcription. In prokaryotes, this holoenzyme is formed by the RNAP core and a sigma factor. After approaching and binding the specific promoter site on the DNA, the holoenzyme-promoter complex undergoes several conformational transitions that allow unwinding and opening of the DNA duplex. Once the first DNA basepairs (∼10 bp) are transcribed in an initial transcription process, the enzyme unbinds from the promoter and proceeds downstream along the DNA while continuously opening the helix and polymerizing the ribonucleotides in correspondence with the template DNA sequence. When the gene is transcribed into RNA, the process generally is terminated and RNAP unbinds from the DNA. The first step of transcription-initiation, is considered the rate-limiting step of the entire process. This review focuses on the single-molecule studies that try to reveal the key steps in the initiation phase of bacterial transcription. Such single-molecule studies have, for example, allowed real-time observations of the RNAP target search mechanism, a mechanism still under debate. Moreover, single-molecule studies using Förster Resonance Energy Transfer (FRET) revealed the conformational changes that the enzyme undergoes during initiation. Force-based techniques such as scanning force microscopy and magnetic tweezers allowed quantification of the energy that drives the RNAP translocation along DNA and its dynamics. In addition to these in vitro experiments, single particle tracking in vivo has provided a direct quantification of the relative populations in each phase of transcription and their locations within the cell.
Collapse
Affiliation(s)
- M Marchetti
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - I Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Monnet J, Strick TR. Watching single molecules in action. eLife 2014; 3:e02061. [PMID: 24473080 PMCID: PMC3904344 DOI: 10.7554/elife.02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A fluorescent imaging technique called fastFISH has been used to track the various steps involved in the transcription of a single DNA molecule.
Collapse
Affiliation(s)
- Jordan Monnet
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris, France
| | - Terence R Strick
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris, France
| |
Collapse
|
6
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|