1
|
Xu C, Ma C, Zhang W, Wei Y, Yang K, Yuan B. Membrane Fusion Mediated by Cationic Helical Peptide L-MMBen through Phosphatidylglycerol Recruitment. J Phys Chem Lett 2024; 15:11027-11034. [PMID: 39466831 DOI: 10.1021/acs.jpclett.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Membrane fusion is the basis for many biological processes, which holds promise in biomedical applications including the creation of engineered hybrid cells and cell membrane functionalization. Extensive research efforts, including investigations into DNA zippers and carbon nanotubes, have been dedicated to the development of membrane fusion strategies inspired by natural SNARE proteins; nevertheless, achieving a delicate balance between membrane selectivity and high fusion efficiency through precise molecular engineering remains unclear. In our recent study, we successfully designed L-MMBen, a cationic helical antimicrobial peptide that exhibits remarkable antimicrobial efficacy while demonstrating moderate cytotoxicity. In this work, we demonstrate the effective and selective induction of fusion between phosphatidylglycerol (PG)-containing membranes by L-MMBen. By combining biophysical assays at the single-vesicle level with computer simulations at the molecular level, we discovered that L-MMBen can stably adsorb onto the surface of PG-containing membranes, leading to the formation of stalk structures between vesicles and ultimately resulting in membrane fusion. Furthermore, the occurrence of fusion is attributed to the unique ability of L-MMBen to recruit PG lipids and bridge adjacent vesicles. In contrast, its nonhelical counterpart DL-MMBen was found to lack this capability despite possessing an identical positive charge. These findings present an alternative molecule for achieving selective membrane fusion and provide insights for designing helical peptides with diverse applications.
Collapse
Affiliation(s)
- Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Li Z, Wang J, O’Hagan MP, Huang F, Xia F, Willner I. Dynamic Fusion of Nucleic Acid Functionalized Nano-/Micro-Cell-Like Containments: From Basic Concepts to Applications. ACS NANO 2023; 17:15308-15327. [PMID: 37549398 PMCID: PMC10448756 DOI: 10.1021/acsnano.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.
Collapse
Affiliation(s)
- Zhenzhen Li
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael P. O’Hagan
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Malle MG, Löffler PMG, Bohr SSR, Sletfjerding MB, Risgaard NA, Jensen SB, Zhang M, Hedegård P, Vogel S, Hatzakis NS. Single-particle combinatorial multiplexed liposome fusion mediated by DNA. Nat Chem 2022; 14:558-565. [PMID: 35379901 DOI: 10.1038/s41557-022-00912-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
Combinatorial high-throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large-scale analyses and thus limited by a long running time and excessive materials cost. We here present a single-particle combinatorial multiplexed liposome fusion mediated by DNA for parallelized multistep and non-deterministic fusion of individual subattolitre nanocontainers. We observed directly the efficient (>93%) and leakage free stochastic fusion sequences for arrays of surface-tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated single-stranded DNA and fluorescently barcoded by a distinct ratio of chromophores. The stochastic fusion resulted in a distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time total internal reflection imaging allowed the direct observation of >16,000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface-tethered target nanocontainers (~42,000 containers per mm2) offers entire combinatorial multiplex screens using only picograms of material.
Collapse
Affiliation(s)
- Mette Galsgaard Malle
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Søren S-R Bohr
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Berg Sletfjerding
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Bo Jensen
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hedegård
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark. .,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Benhaim MA, Lee KK. New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes. Viruses 2020; 12:E413. [PMID: 32276357 PMCID: PMC7232462 DOI: 10.3390/v12040413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-mediated membrane fusion is a highly regulated biological process essential for cellular and organismal functions and infection by enveloped viruses. During viral entry the membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature of these conformational changes and their impact on the membranes have long-eluded characterization. Recent advances in structural and biophysical methodologies have enabled researchers to directly observe viral fusion proteins as they carry out their functions during membrane fusion. Here we review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated membrane fusion. We highlight how recent technological advances and new biophysical approaches are providing unprecedented new insight into the membrane fusion reaction.
Collapse
Affiliation(s)
- Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 98195-7610, USA
| |
Collapse
|
5
|
Kweon DH, Kong B, Shin YK. Search for a minimal machinery for Ca 2+-triggered millisecond neuroexocytosis. Neuroscience 2018; 420:4-11. [PMID: 30056116 DOI: 10.1016/j.neuroscience.2018.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022]
Abstract
Neurons have the remarkable ability to release a batch of neurotransmitters into the synapse immediately after an action potential. This signature event is made possible by the simultaneous fusion of a number of synaptic vesicles to the plasma membrane upon Ca2+ entry into the active zone. The outcomes of both cellular and in vitro studies suggest that soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) and synaptotagmin 1 (Syt1) constitute the minimal fast exocytosis machinery in the neuron. Syt1 is the major Ca2+-sensor and orchestrates the synchronous start of individual vesicle fusion events while SNAREs are the membrane fusion machinery that dictates the kinetics of each single fusion event. The data also suggest that Ca2+-bound Syt1 is involved in the upstream docking step which leads to an increase in the number of fusion events or the size of the release, leaving the SNARE complex alone to carry out membrane fusion by themselves.
Collapse
Affiliation(s)
- Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
6
|
Jumeaux C, Wahlsten O, Block S, Kim E, Chandrawati R, Howes PD, Höök F, Stevens MM. MicroRNA Detection by DNA-Mediated Liposome Fusion. Chembiochem 2018; 19:434-438. [PMID: 29333674 PMCID: PMC5861668 DOI: 10.1002/cbic.201700592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Olov Wahlsten
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Stephan Block
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
- Present address: Department of Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Eunjung Kim
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Rona Chandrawati
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Present address: School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Philip D. Howes
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Fredrik Höök
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
7
|
Sasmal DK, Pulido LE, Kasal S, Huang J. Single-molecule fluorescence resonance energy transfer in molecular biology. NANOSCALE 2016; 8:19928-19944. [PMID: 27883140 PMCID: PMC5145784 DOI: 10.1039/c6nr06794h] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the conformation dynamics and interactions of individual biomolecules. In this review, we describe the concept and principle of smFRET, illustrate general instrumentation and microscopy settings for experiments, and discuss the methods and algorithms for data analysis. Subsequently, we review applications of smFRET in protein conformational changes, ion channel open-close properties, receptor-ligand interactions, nucleic acid structure regulation, vesicle fusion, and force induced conformational dynamics. Finally, we discuss the main limitations of smFRET in molecular biology.
Collapse
Affiliation(s)
- Dibyendu K Sasmal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura E Pulido
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Shan Kasal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Jun Huang
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion. J Virol 2016; 90:6948-6962. [PMID: 27226364 DOI: 10.1128/jvi.00240-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus.
Collapse
|
9
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Lai Y, Kim S, Varkey J, Lou X, Song JK, Diao J, Langen R, Shin YK. Nonaggregated α-synuclein influences SNARE-dependent vesicle docking via membrane binding. Biochemistry 2014; 53:3889-96. [PMID: 24884175 PMCID: PMC4075992 DOI: 10.1021/bi5002536] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
α-Synuclein
(α-Syn), a major component of Lewy body
that is considered as the hallmark of Parkinson’s disease (PD),
has been implicated in neuroexocytosis. Overexpression of α-Syn
decreases the neurotransmitter release. However, the mechanism by
which α-Syn buildup inhibits the neurotransmitter release is
still unclear. Here, we investigated the effect of nonaggregated α-Syn
on SNARE-dependent liposome fusion using fluorescence methods. In
ensemble in vitro assays, α-Syn reduces lipid mixing mediated
by SNAREs. Furthermore, with the more advanced single-vesicle assay
that can distinguish vesicle docking from fusion, we found that α-Syn
specifically inhibits vesicle docking, without interfering with the
fusion. The inhibition in vesicle docking requires α-Syn binding
to acidic lipid containing membranes. Thus, these results imply the
existence of at least two mechanisms of inhibition of SNARE-dependent
membrane fusion: at high concentrations, nonaggregated α-Syn
inhibits docking by binding acidic lipids but not v-SNARE; on the
other hand, at much lower concentrations, large α-Syn oligomers
inhibit via a mechanism that requires v-SNARE interaction [Choi et al. 2013, 110 (10), 4087−409223431141].
Collapse
Affiliation(s)
- Ying Lai
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schang LM. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virol 2014. [DOI: 10.2217/fvl.13.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT: Antivirals have traditionally been developed to act by biochemical principles targeting proteins, such as inhibition of enzymes or protein–protein interactions. This approach has resulted in 57 clinical antivirals or boosters, and multiple others under development. However, viral infection also requires specific unique biophysical activities from the lipids in the viral envelope. These biophysical activities could also be targeted with small molecules. Several phospholipids, for example, inhibit infectivity in model systems. Such knowledge had not been applied to antiviral development until recently. However, two families of small molecules that inhibit viral infectivity by biophysical mechanisms affecting the lipids of the virion envelope were independently identified in 2010. Although they have yet to prove strong antiviral activities in vivo, and their long-term toxicological profiles have yet to be characterized, they do provide proof-of-principle that small molecule ‘drug-like’ compounds can act by biophysical principles affecting the lipids of the virion envelope.
Collapse
Affiliation(s)
- Luis M Schang
- *Department of Biochemistry, Li Ka Shing Institute of Virology & Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; 6-142G KATZ, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
12
|
Christensen AL, Lohr C, Christensen SM, Stamou D. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience. LAB ON A CHIP 2013; 13:3613-3625. [PMID: 23856986 DOI: 10.1039/c3lc50492a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the major bottlenecks in the development of biochips is maintaining the structure and function of biomolecules when interfacing them with hard matter (glass, plastics, metals, etc.), a challenge that is exacerbated during miniaturization that inevitably increases the interface to volume ratio of these devices. Biochips based on immobilized vesicles circumvent this problem by encapsulating biomolecules in the protective environment of a lipid bilayer, thus minimizing interactions with hard surfaces. Here we review the development of biochips based on arrays of single nanoscale vesicles, their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high throughput, single vesicle biochips are still a niche technology that has yet to establish its commercial relevance.
Collapse
Affiliation(s)
- Andreas L Christensen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
13
|
Otterstrom J, van Oijen AM. Visualization of membrane fusion, one particle at a time. Biochemistry 2013; 52:1654-68. [PMID: 23421412 DOI: 10.1021/bi301573w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-mediated fusion between phospholipid bilayers is a fundamental and necessary mechanism for many cellular processes. The short-lived nature of the intermediate states visited during fusion makes it challenging to capture precise kinetic information using classical, ensemble-averaging biophysical techniques. Recently, a number of single-particle fluorescence microscopy-based assays that allow researchers to obtain highly quantitative data about the fusion process by observing individual fusion events in real time have been developed. These assays depend upon changes in the acquired fluorescence signal to provide a direct readout for transitions between the various fusion intermediates. The resulting data yield meaningful and detailed kinetic information about the transitory states en route to productive membrane fusion. In this review, we highlight recent in vitro and in vivo studies of membrane fusion at the single-particle level in the contexts of viral membrane fusion and SNARE-mediated synaptic vesicle fusion. These studies afford insight into mechanisms of coordination between fusion-mediating proteins as well as coordination of the overall fusion process with other cellular processes. The development of single-particle approaches to investigate membrane fusion and their successful application to a number of model systems have resulted in a new experimental paradigm and open up considerable opportunities to extend these methods to other biological processes that involve membrane fusion.
Collapse
Affiliation(s)
- Jason Otterstrom
- Harvard Biophysics Program, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
14
|
A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 2013; 7:921-34. [PMID: 22582418 DOI: 10.1038/nprot.2012.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are a highly regulated class of membrane proteins that drive the efficient merger of two distinct lipid bilayers into one interconnected structure. This protocol describes our fluorescence resonance energy transfer (FRET)-based single vesicle-vesicle fusion assays for SNAREs and accessory proteins. Both lipid-mixing (with FRET pairs acting as lipophilic dyes in the membranes) and content-mixing assays (with FRET pairs present on a DNA hairpin that becomes linear via hybridization to a complementary DNA) are described. These assays can be used to detect substages such as docking, hemifusion, and pore expansion and full fusion. The details of flow cell preparation, protein-reconstituted vesicle preparation, data acquisition and analysis are described. These assays can be used to study the roles of various SNARE proteins, accessory proteins and effects of different lipid compositions on specific fusion steps. The total time required to finish one round of this protocol is 3–6 d.
Collapse
|
15
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
16
|
Gauer JW, Sisk R, Murphy JR, Jacobson H, Sutton RB, Gillispie GD, Hinderliter A. Mechanism for calcium ion sensing by the C2A domain of synaptotagmin I. Biophys J 2012; 103:238-46. [PMID: 22853901 DOI: 10.1016/j.bpj.2012.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022] Open
Abstract
The C2A domain is one of two calcium ion (Ca(2+))- and membrane-binding domains within synaptotagmin I (Syt I), the identified Ca(2+) sensor for regulated exocytosis of neurotransmitter. We propose that the mechanistic basis for C2A's response to Ca(2+) and cellular function stems from marginal stability and ligand-induced redistributions of protein conformers. To test this hypothesis, we used a combination of calorimetric and fluorescence techniques. We measured free energies of stability by globally fitting differential scanning calorimetry and fluorescence lifetime spectroscopy denaturation data, and found that C2A is weakly stable. Additionally, using partition functions in a fluorescence resonance energy transfer approach, we found that the Ca(2+)- and membrane-binding sites of C2A exhibit weak cooperative linkage. Lastly, a dye-release assay revealed that the Ca(2+)- and membrane-bound conformer subset of C2A promote membrane disruption. We discuss how these phenomena may lead to both cooperative and functional responses of Syt I.
Collapse
Affiliation(s)
- Jacob W Gauer
- Department of Chemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kunding AH, Mortensen MW, Christensen SM, Bhatia VK, Makarov I, Metzler R, Stamou D. Intermembrane docking reactions are regulated by membrane curvature. Biophys J 2012; 101:2693-703. [PMID: 22261058 DOI: 10.1016/j.bpj.2011.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022] Open
Abstract
The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle-vesicle pairs of different diameter (30-200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30-60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2-10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.
Collapse
Affiliation(s)
- Andreas H Kunding
- Bionanotechnology and Nanomedicine Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Elizondo E, Larsen J, Hatzakis NS, Cabrera I, Bjørnholm T, Veciana J, Stamou D, Ventosa N. Influence of the Preparation Route on the Supramolecular Organization of Lipids in a Vesicular System. J Am Chem Soc 2012; 134:1918-21. [DOI: 10.1021/ja2086678] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Elisa Elizondo
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jannik Larsen
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nikos S. Hatzakis
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ingrid Cabrera
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Bjørnholm
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jaume Veciana
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios Stamou
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nora Ventosa
- Department
of Molecular Nanoscience and Organic Materials (ICMAB-CSIC) and ‡CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra,
08193, Spain
- Bio-Nanotechnology
Laboratory, Department of Neuroscience and Pharmacology, ∞Nano-Science Center, ⊥Lundbeck Foundation
Center Biomembranes in Nanomedicine, and #Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Christensen SM, Bolinger PY, Hatzakis NS, Mortensen MW, Stamou D. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. NATURE NANOTECHNOLOGY 2011; 7:51-55. [PMID: 22036813 DOI: 10.1038/nnano.2011.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Handling and mixing ultrasmall volumes of reactants in parallel can increase the throughput and complexity of screening assays while simultaneously reducing reagent consumption. Microfabricated silicon and plastic can provide reliable fluidic devices, but cannot typically handle total volumes smaller than ∼1 × 10(-12) l. Self-assembled soft matter nanocontainers can in principle significantly improve miniaturization and biocompatibility, but exploiting their full potential is a challenge due to their small dimensions. Here, we show that small unilamellar lipid vesicles can be used to mix volumes as small as 1 × 10(-19) l in a reproducible and highly parallelized fashion. The self-enclosed nanoreactors are functionalized with lipids of opposite charge to achieve reliable fusion. Single vesicles encapsulating one set of reactants are immobilized on a glass surface and then fused with diffusing vesicles of opposite charge that carry a complementary set of reactants. We find that ∼85% of the ∼1 × 10(6) cm(-2) surface-tethered nanoreactors undergo non-deterministic fusion, which is leakage-free in all cases, and the system allows up to three to four consecutive mixing events per nanoreactor.
Collapse
Affiliation(s)
- Sune M Christensen
- Bionanotechnology and Nanomedicine Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
20
|
Larsen J, Hatzakis NS, Stamou D. Observation of Inhomogeneity in the Lipid Composition of Individual Nanoscale Liposomes. J Am Chem Soc 2011; 133:10685-7. [DOI: 10.1021/ja203984j] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jannik Larsen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, §Nano-Science Center, ‡Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nikos S. Hatzakis
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, §Nano-Science Center, ‡Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, §Nano-Science Center, ‡Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Christensen SM, Stamou DG. Sensing-applications of surface-based single vesicle arrays. SENSORS (BASEL, SWITZERLAND) 2010; 10:11352-68. [PMID: 22163531 PMCID: PMC3231067 DOI: 10.3390/s101211352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 11/26/2022]
Abstract
A single lipid vesicle can be regarded as an autonomous ultra-miniaturised 3D biomimetic "scaffold" (Ø≥13 nm) ideally suited for reconstitution and interrogation of biochemical processes. The enclosing lipid bilayer membrane of a vesicle can be applied for studying binding (protein/lipid or receptor/ligand interactions) or transmembrane events (membrane permeability or ion channel activation) while the aqueous vesicle lumen can be used for confining few or single macromolecules and probe, e.g., protein folding, catalytic pathways of enzymes or more complex biochemical reactions, such as signal transduction cascades. Immobilisation (arraying) of single vesicles on a solid support is an extremely useful technique that allows detailed characterisation of vesicle preparations using surface sensitive techniques, in particular fluorescence microscopy. Surface-based single vesicle arrays allow a plethora of prototypic sensing applications in a high throughput format with high spatial and high temporal resolution. In this review we present a series of applications of single vesicle arrays for screening/sensing of: membrane curvature dependent protein-lipid interactions, bilayer tension, reactions triggered in the vesicle lumen, the activity of transmembrane protein channels and biological membrane fusion reactions.
Collapse
Affiliation(s)
- Sune M. Christensen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios G. Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|