1
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Gaska I, Armstrong ME, Alfieri A, Forth S. The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding. Dev Cell 2020; 54:367-378.e5. [DOI: 10.1016/j.devcel.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 06/14/2020] [Indexed: 01/23/2023]
|
3
|
Elting MW, Suresh P, Dumont S. The Spindle: Integrating Architecture and Mechanics across Scales. Trends Cell Biol 2018; 28:896-910. [PMID: 30093097 PMCID: PMC6197898 DOI: 10.1016/j.tcb.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023]
Abstract
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally
| | - Pooja Suresh
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally
| | - Sophie Dumont
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Cellular & Molecular Pharmacology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Li JA, Liu BC, Song Y, Chen X. Cyclin A2 regulates symmetrical mitotic spindle formation and centrosome amplification in human colon cancer cells. Am J Transl Res 2018; 10:2669-2676. [PMID: 30210703 PMCID: PMC6129552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Colon cancer is one of the most fatal cancers in the United States, and is characterized by the presence of chromosomal instability (CIN), causes of which are largely unclear. Emerging evidence indicates that abnormal spindle geometry and supernumerary centrosomes lead to CIN in cells. However, if and how spindle geometry defects and centrosomes amplification occur in colon cancer remains unknown. Here we show that decrease in the cell cycle regulatory protein, cyclin A2, induces spindle geometry defects in colon cancer cells. In mechanistic studies, we found that cyclin A2 is located at the centrosomes, and its depletion reduces phosphorylation of EG5, which is important for centrosome localization and movement of duplicated centrosomes to opposite poles. We also found that cyclin A2 silencing leads to centrosome amplification in the cells. Collectively, these findings demonstrate previously unrecognized role for cyclin A2 in preventing centrosomal defects in colon cancer cells and provide insights into mechanisms that may potentially cause CIN in these tumors.
Collapse
Affiliation(s)
- Jun-An Li
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| | - Bai-Chun Liu
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| | - Ying Song
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| | - Xin Chen
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| |
Collapse
|
5
|
Suzuki K, Itabashi T, Ishiwata S. Mechanical properties of spindle poles are symmetrically balanced. Biophys Physicobiol 2017; 14:1-11. [PMID: 28409085 PMCID: PMC5289413 DOI: 10.2142/biophysico.14.0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/28/2016] [Indexed: 12/01/2022] Open
Abstract
The metaphase spindle is organized for accurate chromosome segregation. One of the fundamental features of the spindle across the species is its symmetrical shape; the spindle consists of two polar arrays of microtubules at both ends. Although it has been suggested that the formation of the bipolar shape requires force balance coordination by molecular motors, i.e., kinesins and dyneins, quantitative analysis for the pole mechanics has not been conducted. Here, we demonstrate that it is not only the shape but also the stiffness and microtubule density of the pairs of pole regions are symmetrically balanced in single spindles self-assembled in Xenopus egg extracts. We found that the inhibition of dynein functions dramatically reduced the stiffness and microtubule density in the pole region. By contrast, the inhibition of one of the kinesins, Eg5, which is the antagonistic motor protein of dynein, increased the value of these parameters. Moreover, the inhibition of both dynein and Eg5 recovered these parameter values to those of non-treated spindle poles. We also found that, when one pole structure was held widened with the use of two glass microneedles, the opposite pole structure spontaneously widened, resulting in the formation of the barrel-like shaped spindle. The values of stiffness and microtubule density in the manipulated pole region decreased, following the spontaneous decrement of those in the paired unmanipulated pole region. These results suggest that the spindle possesses a mechanism to dynamically maintain its symmetry in mechanical properties.
Collapse
Affiliation(s)
- Kazuya Suzuki
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, Singapore 138667, Singapore
| | - Takeshi Itabashi
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, Singapore 138667, Singapore
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Abstract
Generation of high-contrast and high-signal fluorescent 3D speckles allows fluorescent speckle microscopy to be performed in readily available libraries of cell lines and primary tissues for the measurement of microtubule turnover and sliding. The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration.
Collapse
Affiliation(s)
- António J Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Michael Belsley
- Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal Cell Division Unit, Department of Experimental Biology, Faculty of Medicine, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Elting MW, Hueschen CL, Udy DB, Dumont S. Force on spindle microtubule minus ends moves chromosomes. ACTA ACUST UNITED AC 2014; 206:245-56. [PMID: 25023517 PMCID: PMC4107791 DOI: 10.1083/jcb.201401091] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After the loss of continuous spindle microtubule attachment to the spindle pole, a previously undescribed mechanism of chromosome transport, powered by dynein pulling on minus ends of severed microtubules, repairs spindle architecture and integrity. The spindle is a dynamic self-assembling machine that coordinates mitosis. The spindle’s function depends on its ability to organize microtubules into poles and maintain pole structure despite mechanical challenges and component turnover. Although we know that dynein and NuMA mediate pole formation, our understanding of the forces dynamically maintaining poles is limited: we do not know where and how quickly they act or their strength and structural impact. Using laser ablation to cut spindle microtubules, we identify a force that rapidly and robustly pulls severed microtubules and chromosomes poleward, overpowering opposing forces and repairing spindle architecture. Molecular imaging and biophysical analysis suggest that transport is powered by dynein pulling on minus ends of severed microtubules. NuMA and dynein/dynactin are specifically enriched at new minus ends within seconds, reanchoring minus ends to the spindle and delivering them to poles. This force on minus ends represents a newly uncovered chromosome transport mechanism that is independent of plus end forces at kinetochores and is well suited to robustly maintain spindle mechanical integrity.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Christina L Hueschen
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Dylan B Udy
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Sophie Dumont
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
8
|
Dong C, Dinu CZ. Molecular trucks and complementary tracks for bionanotechnological applications. Curr Opin Biotechnol 2013; 24:612-9. [DOI: 10.1016/j.copbio.2013.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 11/28/2022]
|
9
|
Cheeseman LP, Harry EF, McAinsh AD, Prior IA, Royle SJ. Specific removal of TACC3-ch-TOG-clathrin at metaphase deregulates kinetochore fiber tension. J Cell Sci 2013; 126:2102-13. [PMID: 23532825 PMCID: PMC3666260 DOI: 10.1242/jcs.124834] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Microtubule-associated proteins of the mitotic spindle are thought to be important for the initial assembly and the maintenance of spindle structure and function. However, distinguishing assembly and maintenance roles for a given protein is difficult. Most experimental methods for protein inactivation are slow and therefore affect both assembly and maintenance. Here, we have used 'knocksideways' to rapidly (∼5 minutes) and specifically remove TACC3-ch-TOG-clathrin non-motor complexes from kinetochore fibers (K-fibers). This method allows the complex to be inactivated at defined stages of mitosis. Removal of TACC3-ch-TOG-clathrin after nuclear envelope breakdown caused severe delays in chromosome alignment. Inactivation at metaphase, following a normal prometaphase, significantly delayed progression to anaphase. In these cells, K-fiber tension was reduced and the spindle checkpoint was not satisfied. Surprisingly, there was no significant loss of K-fiber microtubules, even after prolonged removal. TACC3-ch-TOG-clathrin removal during metaphase also resulted in a decrease in spindle length and significant alteration in kinetochore dynamics. Our results indicate that TACC3-ch-TOG-clathrin complexes are important for the maintenance of spindle structure and function as well as for initial spindle assembly.
Collapse
Affiliation(s)
- Liam P. Cheeseman
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Edward F. Harry
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Molecular Organization and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Ian A. Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Stephen J. Royle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
Pereira AJ, Maiato H. Maturation of the kinetochore-microtubule interface and the meaning of metaphase. Chromosome Res 2012; 20:563-77. [PMID: 22801775 DOI: 10.1007/s10577-012-9298-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromosome positioning at the equator of the mitotic spindle emerges out of a relatively entropic background. At this moment, termed metaphase, all kinetochores have typically captured microtubules leading to satisfaction of the spindle-assembly checkpoint, but the cell does not enter anaphase immediately. The waiting time in metaphase is related to the kinetics of securin and cyclin B1 degradation, which trigger sister-chromatid separation and promote anaphase processivity, respectively. Yet, as judged by metaphase duration, such kinetics vary widely between cell types and organisms, with no evident correlation to ploidy or cell size. During metaphase, many animal and plant spindles are also characterized by a conspicuous "flux" activity characterized by continuous poleward translocation of spindle microtubules, which maintain steady-state length and position. Whether spindle microtubule flux plays a specific role during metaphase remains arguable. Based on known experimental parameters, we have performed a comparative analysis amongst different cell types from different organisms and show that spindle length, metaphase duration and flux velocity combine within each system to obey a quasi-universal rule. As so, knowledge of two of these parameters is enough to estimate the third. This trend indicates that metaphase duration is tuned to allow approximately one kinetochore-to-pole round of microtubule flux. We propose that the time cells spend in metaphase evolved as a quality enhancement step that allows for the uniform stabilization/correction of kinetochore-microtubule attachments, thereby promoting mitotic fidelity.
Collapse
Affiliation(s)
- António J Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | |
Collapse
|
11
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|