1
|
Ivanov YD, Shumov ID, Kozlov AF, Valueva AA, Ershova MO, Ivanova IA, Ableev AN, Tatur VY, Lukyanitsa AA, Ivanova ND, Ziborov VS. Atomic Force Microscopy Study of the Long-Term Effect of the Glycerol Flow, Stopped in a Coiled Heat Exchanger, on Horseradish Peroxidase. MICROMACHINES 2024; 15:499. [PMID: 38675310 PMCID: PMC11052087 DOI: 10.3390/mi15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Glycerol is employed as a functional component of heat-transfer fluids, which are of use in both bioreactors and various biosensor devices. At the same time, flowing glycerol was reported to cause considerable triboelectric effects. Herein, by using atomic force microscopy (AFM), we have revealed the long-term effect of glycerol flow, stopped in a ground-shielded coiled heat exchanger, on horseradish peroxidase (HRP) adsorption on mica. Namely, the solution of HRP was incubated in the vicinity of the side of the cylindrical coil with stopped glycerol flow, and then HRP was adsorbed from this solution onto a mica substrate. This incubation has been found to markedly increase the content of aggregated enzyme on mica-as compared with the control enzyme sample. We explain the phenomenon observed by the influence of triboelectrically induced electromagnetic fields of non-trivial topology. The results reported should be further considered in the development of flow-based heat exchangers of biosensors and bioreactors intended for operation with enzymes.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Alexander N. Ableev
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Vadim Y. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, 109472 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
2
|
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, van der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proc Natl Acad Sci U S A 2024; 121:e2313162121. [PMID: 38451946 PMCID: PMC10945838 DOI: 10.1073/pnas.2313162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/30/2023] [Indexed: 03/09/2024] Open
Abstract
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Liru Feng
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Kevin Klein
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
- University College London, Division of Physics and Astronomy, LondonWC1E 6BT, United Kingdom
| | - Guido Giannetti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Yeji Choi
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Federico Caporaletti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Dimitra Micha
- Amsterdam University Medical Centers, Human Genetics Department, Vrije Universiteit, Amsterdam1007 MB, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andela Šarić
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
| | - Ioana M. Ilie
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| |
Collapse
|
3
|
Fusco G, Biancaniello C, Vrettas MD, De Simone A. Thermal tuning of protein hydration in a hyperthermophilic enzyme. Front Mol Biosci 2022; 9:1037445. [PMID: 36518847 PMCID: PMC9742426 DOI: 10.3389/fmolb.2022.1037445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/14/2022] [Indexed: 10/24/2023] Open
Abstract
Water at the protein surface is an active biological molecule that plays a critical role in many functional processes. Using NMR-restrained MD simulations, we here addressed how protein hydration is tuned at high biological temperatures by analysing homologous acylphosphatase enzymes (AcP) possessing similar structure and dynamics under very different thermal conditions. We found that the hyperthermophilic Sso AcP at 80°C interacts with a lower number of structured waters in the first hydration shell than its human homologous mt AcP at 37°C. Overall, the structural and dynamical properties of waters at the surface of the two enzymes resulted similar in the first hydration shell, including solvent molecules residing in the active site. By contrast the dynamical content of water molecules in the second hydration shell was found to diverge, with higher mobility observed in Sso AcP at 80°C. Taken together the results delineate the subtle differences in the hydration properties of mt AcP and Sso AcP, and indicate that the concept of corresponding states with equivalent dynamics in homologous mesophilic and hyperthermophylic proteins should be extended to the first hydration shell.
Collapse
Affiliation(s)
- Giuliana Fusco
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Michail D. Vrettas
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
4
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
5
|
Qu F, ElOmari K, Wagner A, De Simone A, Beis K. Desolvation of the substrate-binding protein TauA dictates ligand specificity for the alkanesulfonate ABC importer TauABC. Biochem J 2019; 476:3649-3660. [PMID: 31802112 PMCID: PMC6906117 DOI: 10.1042/bcj20190779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/02/2022]
Abstract
Under limiting sulfur availability, bacteria can assimilate sulfur from alkanesulfonates. Bacteria utilize ATP-binding cassette (ABC) transporters to internalise them for further processing to release sulfur. In gram-negative bacteria the TauABC and SsuABC ensure internalization, although, these two systems have common substrates, the former has been characterized as a taurine specific system. TauA and SsuA are substrate-binding proteins (SBPs) that bind and bring the alkanesulfonates to the ABC importer for transport. Here, we have determined the crystal structure of TauA and have characterized its thermodynamic binding parameters by isothermal titration calorimetry in complex with taurine and different alkanesulfonates. Our structures revealed that the coordination of the alkanesulfonates is conserved, with the exception of Asp205 that is absent from SsuA, but the thermodynamic parameters revealed a very high enthalpic penalty cost for binding of the other alkanesulfonates relative to taurine. Our molecular dynamic simulations indicated that the different levels of hydration of the binding site contributed to the selectivity for taurine over the other alkanesulfonates. Such selectivity mechanism is very likely to be employed by other SBPs of ABC transporters.
Collapse
Affiliation(s)
- Feng Qu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, U.K
| | - Kamel ElOmari
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, U.K
| | - Armin Wagner
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, U.K
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, U.K
| |
Collapse
|
6
|
Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem J 2018; 475:3123-3140. [PMID: 30315001 DOI: 10.1042/bcj20180482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The scenario of chemical reactions prompted by the infection by Mycobacterium tuberculosis is huge. The infection generates a localized inflammatory response, with the recruitment of neutrophils, monocytes, and T-lymphocytes. Consequences of this immune reaction can be the eradication or containment of the infection, but these events can be deleterious to the host inasmuch as lung tissue can be destroyed. Indeed, a hallmark of tuberculosis (TB) is the formation of lung cavities, which increase disease development and transmission, as they are sites of high mycobacterial burden. Pulmonary cavitation is associated with antibiotic failure and the emergence of antibiotic resistance. For cavities to form, M. tuberculosis induces the overexpression of host proteases, like matrix metalloproteinases and cathepsin, which are secreted from monocyte-derived cells, neutrophils, and stromal cells. These proteases destroy the lung parenchyma, in particular the collagen constituent of the extracellular matrix (ECM). Namely, in an attempt to destroy infected cells, the immune reactions prompted by mycobacterial infections induce the destruction of vital regions of the lung, in a process that can become fatal. Here, we review structure and function of the main molecular actors of ECM degradation due to M. tuberculosis infection and the proposed mechanisms of tissue destruction, mainly attacking fibrillar collagen. Importantly, enzymes responsible for collagen destruction are emerging as key targets for adjunctive therapies to limit immunopathology in TB.
Collapse
|
7
|
Squeglia F, Ruggiero A, De Simone A, Berisio R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci 2017; 27:369-380. [PMID: 29139177 DOI: 10.1002/pro.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non-pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin-binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host-pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| |
Collapse
|
8
|
Squeglia F, Ruggiero A, Berisio R. Chemistry of Peptidoglycan in Mycobacterium tuberculosis
Life Cycle: An off-the-wall Balance of Synthesis and Degradation. Chemistry 2017; 24:2533-2546. [DOI: 10.1002/chem.201702973] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| |
Collapse
|
9
|
Lapelosa M. Free Energy of Binding and Mechanism of Interaction for the MEEVD-TPR2A Peptide-Protein Complex. J Chem Theory Comput 2017; 13:4514-4523. [PMID: 28723223 DOI: 10.1021/acs.jctc.7b00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The association between the MEEVD C-terminal peptide from the heat shock protein 90 (Hsp90) and tetratricopeptide repeat A (TPR2A) domain of the heat shock organizing protein (Hop) is a useful prototype to study the fundamental molecular details about the Hop-Hsp90 interaction. We study here the mechanism of binding/unbinding and compute the standard binding free energy and potential of mean force for the association of the MEEVD peptide to the TPR2A domain using the Adaptive Biasing Force (ABF) methodology. We observe conformational changes of the peptide and the protein receptor induced by binding. We measure the binding free energy of -8.4 kcal/mol, which is consistent with experimental estimates. The simulations achieve multiple unbinding and rebinding events along a consistent pathway connecting the binding site to solvent. The MEEVD peptide slowly dissociates disrupting the hydrogen bonds first, then tilting on the side while preserving the interaction with the side chain of residue Asp 5 of the peptide. After this initial displacement, the peptide completely dissociates and moves into the solvent. Rebinding of the MEEVD peptide from the solvent to the receptor binding site occurs slowly through the portal of entry. Unbinding and rebinding go through intermediate states characterized by the peptide interacting with a lateral helix, helix A1, of the receptor with mainly Asp 5, Val 4, and Glu 3 of the peptide. This newly discovered intermediate structure is characterized by numerous contacts with the receptor which lead to complete formation of the bound complex. The structure of the bound complex obtained after rebinding is structurally very similar to the crystal structure of the complex (0.48 Å root-mean square deviation). The residues Asp 5, Val 4, and Glu 3 adopt conformations and intermolecular contacts with excellent structural similarity with the native ones. Finally, the dissociation and reassociation of MEEVD induce hydration/dehydration transitions, which provide insights on the role of desolvation and solvation processes in protein-peptide binding.
Collapse
Affiliation(s)
- Mauro Lapelosa
- Department of Drug Discovery and Development, Italian Institute of Technology , Via Morego 30, Genova 16163, Italy
| |
Collapse
|
10
|
Collagen structure: new tricks from a very old dog. Biochem J 2016; 473:1001-25. [PMID: 27060106 DOI: 10.1042/bj20151169] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.
Collapse
|
11
|
Sun X, Shi Y, Akahoshi T, Fujiwara M, Gatanaga H, Schönbach C, Kuse N, Appay V, Gao GF, Oka S, Takiguchi M. Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation. Cell Rep 2016; 15:2279-2291. [PMID: 27239036 DOI: 10.1016/j.celrep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level.
Collapse
Affiliation(s)
- Xiaoming Sun
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mamoru Fujiwara
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Christian Schönbach
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Victor Appay
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; INSERM, Unité Mixte de Recherche 1135, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre d'Immunologie et des Maladies Infectieuses-Paris, 75013 Paris, France
| | - George F Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
12
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
13
|
Fu I, Case DA, Baum J. Dynamic Water-Mediated Hydrogen Bonding in a Collagen Model Peptide. Biochemistry 2016; 54:6029-37. [PMID: 26339765 DOI: 10.1021/acs.biochem.5b00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the canonical (G-X-Y)(n) sequence of the fibrillar collagen triple helix, stabilizing direct interchain hydrogen bonding connects neighboring chains. Mutations of G can disrupt these interactions and are linked to connective tissue diseases. Here we integrate computational approaches with nuclear magnetic resonance (NMR) to obtain a dynamic view of hydrogen bonding distributions in the (POG)(4)(-)(POA)-(POG)(5) peptide, showing that the solution conformation, dynamics, and hydrogen bonding deviate from the reported X-ray crystal structure in many aspects. The simulations and NMR data provide clear evidence of inequivalent environments in the three chains. Molecular dynamics (MD) simulations indicate direct interchain hydrogen bonds in the leading chain, water bridges in the middle chain, and nonbridging waters in the trailing chain at the G → A substitution site. Theoretical calculations of NMR chemical shifts using a quantum fragmentation procedure can account for the unusual downfield NMR chemical shifts at the substitution sites and are used to assign the resonances to the individual chains. The NMR and MD data highlight the sensitivity of amide shifts to changes in the acceptor group from peptide carbonyls to water. The results are used to interpret solution NMR data for a variety of glycine substitutions and other sequence triplet interruptions to provide new connections between collagen sequences, their associated structures, dynamical behavior, and their ability to recognize collagen receptors.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Jean Baum
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
14
|
Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1289-98. [PMID: 24747150 DOI: 10.1016/j.bbapap.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 02/08/2023]
Abstract
Recent investigations have highlighted a key role of the proteins of the KCTD (K-potassium channel tetramerization domain containing proteins) family in several fundamental biological processes. Despite the growing importance of KCTDs, our current understanding of their biophysical and structural properties is very limited. Biochemical characterizations of these proteins have shown that most of them act as substrate adaptor in E3 ligases during protein ubiquitination. Here we present a characterization of the KCTD5-Cullin3 interactions which are mediated by the KCTD5 BTB domain. Isothermal titration calorimetry experiments reveal that KCTD5 avidly binds the Cullin3 (Cul3). The complex presents a 5:5 stoichiometry and a dissociation constant of 59 nM. Molecular modeling and molecular dynamics simulations clearly indicate that the two proteins form a stable (KCTD5-Cul3)(5) pinwheel-shaped heterodecamer in which two distinct KCTD5 subunits cooperate in the binding of each cullin chain. Molecular dynamics simulations indicate that different types of interactions contribute to the stability of the assembly. Interestingly, residues involved in Cul3 recognitions are conserved in the KCTD5 orthologs and paralogs implicated in important biological processes. These residues are also rather well preserved in most of the other KCTD proteins. By using molecular modeling techniques, the entire ubiquitination system including the E3 ligase, the E2 conjugating enzyme and ubiquitin was generated. The analysis of the molecular architecture of this complex machinery provides insights into the ubiquitination processes which involve E3 ligases with a high structural complexity.
Collapse
|
15
|
Paces WR, Holmes HR, Vlaisavljevich E, Snyder KL, Tan EL, Rajachar RM, Ong KG. Application of sub-micrometer vibrations to mitigate bacterial adhesion. J Funct Biomater 2014; 5:15-26. [PMID: 24956354 PMCID: PMC4030904 DOI: 10.3390/jfb5010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/05/2023] Open
Abstract
As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.
Collapse
Affiliation(s)
- Will R Paces
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Hal R Holmes
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Katherine L Snyder
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Ee Lim Tan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Keat Ghee Ong
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
16
|
Squeglia F, Bachert B, De Simone A, Lukomski S, Berisio R. The crystal structure of the streptococcal collagen-like protein 2 globular domain from invasive M3-type group A Streptococcus shows significant similarity to immunomodulatory HIV protein gp41. J Biol Chem 2013; 289:5122-33. [PMID: 24356966 DOI: 10.1074/jbc.m113.523597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The arsenal of virulence factors deployed by streptococci includes streptococcal collagen-like (Scl) proteins. These proteins, which are characterized by a globular domain and a collagen-like domain, play key roles in host adhesion, host immune defense evasion, and biofilm formation. In this work, we demonstrate that the Scl2.3 protein is expressed on the surface of invasive M3-type strain MGAS315 of Streptococcus pyogenes. We report the crystal structure of Scl2.3 globular domain, the first of any Scl. This structure shows a novel fold among collagen trimerization domains of either bacterial or human origin. Despite there being low sequence identity, we observed that Scl2.3 globular domain structurally resembles the gp41 subunit of the envelope glycoprotein from human immunodeficiency virus type 1, an essential subunit for viral fusion to human T cells. We combined crystallographic data with modeling and molecular dynamics techniques to gather information on the entire lollipop-like Scl2.3 structure. Molecular dynamics data evidence a high flexibility of Scl2.3 with remarkable interdomain motions that are likely instrumental to the protein biological function in mediating adhesive or immune-modulatory functions in host-pathogen interactions. Altogether, our results provide molecular tools for the understanding of Scl-mediated streptococcal pathogenesis and important structural insights for the future design of small molecular inhibitors of streptococcal invasion.
Collapse
Affiliation(s)
- Flavia Squeglia
- From the Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
17
|
Berisio R, Vitagliano L. Polyproline and triple helix motifs in host-pathogen recognition. Curr Protein Pept Sci 2013; 13:855-65. [PMID: 23305370 PMCID: PMC3707005 DOI: 10.2174/138920312804871157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/10/2012] [Accepted: 08/30/2012] [Indexed: 01/18/2023]
Abstract
Secondary structure elements often mediate protein-protein interactions. Despite their low abundance in folded proteins, polyproline II (PPII) and its variant, the triple helix, are frequently involved in protein-protein interactions, likely due to their peculiar propensity to be solvent-exposed. We here review the role of PPII and triple helix in mediating host-pathogen interactions, with a particular emphasis to the structural aspects of these processes. After a brief description of the basic structural features of these elements, examples of host-pathogen interactions involving these motifs are illustrated. Literature data suggest that the role played by PPII motif in these processes is twofold. Indeed, PPII regions may directly mediate interactions between proteins of the host and the pathogen. Alternatively, PPII may act as structural spacers needed for the correct positioning of the elements needed for adhesion and infectivity. Recent investigations have highlighted that collagen triple helix is also a common target for bacterial adhesins. Although structural data on complexes between adhesins and collagen models are rather limited, experimental and theoretical studies have unveiled some interesting clues of the recognition process. Interestingly, very recent data show that not only is the triple helix used by pathogens as a target in the host-pathogen interaction but it may also act as a bait in these processes since bacterial proteins containing triple helix regions have been shown to interact with host proteins. As both PPII and triple helix expose several main chain non-satisfied hydrogen bond acceptors and donors, both elements are highly solvated. The preservation of the solvation state of both PPII and triple helix upon protein-protein interaction is an emerging aspect that will be here thoroughly discussed.
Collapse
Affiliation(s)
- Rita Berisio
- Istituto di Biostrutture e Bioimmagini, CNR via Mezzocannone 16, I-80134 Napoli, Italy
| | | |
Collapse
|
18
|
Biedermann F, Vendruscolo M, Scherman OA, De Simone A, Nau WM. Cucurbit[8]uril and Blue-Box: High-Energy Water Release Overwhelms Electrostatic Interactions. J Am Chem Soc 2013; 135:14879-88. [DOI: 10.1021/ja407951x] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Frank Biedermann
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
| | - Michele Vendruscolo
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Alfonso De Simone
- Division
of Molecular Biosciences, Imperial College London, London, SW7 2AZ, U.K
| | - Werner M. Nau
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
| |
Collapse
|
19
|
Squeglia F, Romano M, Ruggiero A, Vitagliano L, De Simone A, Berisio R. Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys J 2013; 104:2530-9. [PMID: 23746526 PMCID: PMC3672874 DOI: 10.1016/j.bpj.2013.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Resuscitation of Mtb is crucial to the etiology of Tuberculosis, because latent tuberculosis is estimated to affect one-third of the world population. The resuscitation-promoting factor RpfB is mainly responsible for Mtb resuscitation from dormancy. Given the impact of latent Tuberculosis, RpfB represents an interesting target for tuberculosis drug discovery. However, no molecular models of substrate binding and catalysis are hitherto available for this enzyme. Here, we identified key interactions involved in substrate binding to RpfB by combining x-ray diffraction studies and computational approaches. The crystal structure of RpfB catalytic domain in complex with N,N',N"-triacetyl-chitotriose, as described here, provides the first, to our knowledge, atomic representation of ligand recognition by RpfB and demonstrates that the strongest interactions are established by the N-acetylglucosamine moiety in the central region of the enzyme binding cleft. Molecular dynamics analyses provided information on the dynamic behavior of protein-substrate interactions and on the role played by the solvent in RpfB function. These data combined with sequence conservation analysis suggest that Glu-292 is the sole residue crucial for catalysis, implying that RpfB acts via the formation of an oxocarbenium ion rather than a covalent intermediate. Present data represent a solid base for the design of effective drug inhibitors of RpfB. Moreover, homology models were generated for the catalytic domains of all members of the Mtb Rpf family (RpfA-E). The analysis of these models unveiled analogies and differences among the different members of the Rpf protein family.
Collapse
Key Words
- mtb, mycobacterium tuberculosis
- rpfb, resuscitation promoting factor b
- pdb, protein data bank
- rpfbc, catalytic domain of rpfb
- nag3, n,n',n"-triacetyl-chitotriose
- nag6, hexa-n- acetylchitohexaose
- md, molecular dynamics
- rmsf, root mean-square fluctuation
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Department of Chemistry, University of Naples Federico II, Napoli, Italy
| | - Maria Romano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Seconda Università di Napoli, Caserta, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, United Kingdom
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| |
Collapse
|
20
|
Ruggiero A, Marchant J, Squeglia F, Makarov V, De Simone A, Berisio R. Molecular determinants of inactivation of the resuscitation promoting factor B fromMycobacterium tuberculosis. J Biomol Struct Dyn 2013; 31:195-205. [DOI: 10.1080/07391102.2012.698243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Biedermann F, Uzunova VD, Scherman OA, Nau WM, De Simone A. Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[n]urils. J Am Chem Soc 2012; 134:15318-23. [DOI: 10.1021/ja303309e] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Frank Biedermann
- Melville Laboratory for Polymer
Synthesis and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Vanya D. Uzunova
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany
| | - Oren A. Scherman
- Melville Laboratory for Polymer
Synthesis and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Werner M. Nau
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany
| | - Alfonso De Simone
- Division of Molecular
Biosciences, Imperial College London, South
Kensington, SW7 2AZ,
U.K
| |
Collapse
|