1
|
Sharma KD, Doktorova M, Waxham MN, Heberle FA. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach. Biophys J 2024; 123:2877-2891. [PMID: 38689500 PMCID: PMC11393711 DOI: 10.1016/j.bpj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness. However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess accuracy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for a more detailed understanding of raft properties in biological contexts.
Collapse
Affiliation(s)
- Karan D Sharma
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
2
|
Wagner AM, Kostina NY, Xiao Q, Klein ML, Percec V, Rodriguez-Emmenegger C. Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells. Biomacromolecules 2024; 25:366-378. [PMID: 38064646 DOI: 10.1021/acs.biomac.3c01027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L0 phases in a liquid-disordered Ld phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.
Collapse
Affiliation(s)
- Anna M Wagner
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Nina Yu Kostina
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08028, Spain
| |
Collapse
|
3
|
Shimokawa N, Takagi M. Biomimetic Lipid Raft: Domain Stability and Interaction with Physiologically Active Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:15-32. [PMID: 39289271 DOI: 10.1007/978-981-97-4584-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.
| |
Collapse
|
4
|
Grusky DS, Bhattacharya A, Boxer SG. Secondary Ion Mass Spectrometry of Single Giant Unilamellar Vesicles Reveals Compositional Variability. J Am Chem Soc 2023; 145:27521-27530. [PMID: 38056605 PMCID: PMC10904076 DOI: 10.1021/jacs.3c09039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Giant unilamellar vesicles (GUVs) are a widely used model system to interrogate lipid phase behavior, study biomembrane mechanics, reconstitute membrane proteins, and provide a chassis for synthetic cells. It is generally assumed that the composition of individual GUVs is the same as the nominal stock composition; however, there may be significant compositional variability between individual GUVs. Although this compositional heterogeneity likely impacts phase behavior, the function and incorporation of membrane proteins, and the encapsulation of biochemical reactions, it has yet to be directly quantified. To assess heterogeneity, we use secondary ion mass spectrometry (SIMS) to probe the composition of individual GUVs using non-perturbing isotopic labels. Both 13C- and 2H-labeled lipids are incorporated into a ternary mixture, which is then used to produce GUVs via gentle hydration or electroformation. Simultaneous detection of seven different ion species via SIMS allows for the concentration of 13C- and 2H-labeled lipids in single GUVs to be quantified using calibration curves, which correlate ion intensity to composition. Additionally, the relative concentration of 13C- and 2H-labeled lipids is assessed for each GUV via the ion ratio 2H-/13C-, which is highly sensitive to compositional differences between individual GUVs and circumvents the need for calibration by using standards. Both quantification methods suggest that gentle hydration produces GUVs with greater compositional variability than those formed by electroformation. However, both gentle hydration and electroformation display standard deviations in composition (n = 30 GUVs) on the order of 1-4 mol %, consistent with variability seen in previous indirect measurements.
Collapse
Affiliation(s)
- Dashiel S Grusky
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Ahanjit Bhattacharya
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
5
|
Park J, Ahn Y, Lee WJ, Jin S, Jeong S, Kim J, Lee YS, Lee JC, Seo D. Analysis of Phase Heterogeneity in Lipid Membranes Using Single-Molecule Tracking in Live Cells. Anal Chem 2023; 95:15924-15932. [PMID: 37774148 DOI: 10.1021/acs.analchem.3c02655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
In live cells, the plasma membrane is composed of lipid domains separated by hundreds of nanometers in dynamic equilibrium. Lipid phase separation regulates the trafficking and spatiotemporal organization of membrane molecules that promote signal transduction. However, visualizing domains with adequate spatiotemporal accuracy remains challenging because of their subdiffraction limit size and highly dynamic properties. Here, we present a single lipid-molecular motion analysis pipeline (lipid-MAP) for analyzing the phase heterogeneity of lipid membranes by detecting the instantaneous velocity change of a single lipid molecule using the excellent optical properties of nanoparticles, high spatial localization accuracy of single-molecule localization microscopy, and separation capability of the diffusion state of the hidden Markov model algorithm. Using lipid-MAP, individual lipid molecules were found to be in dynamic equilibrium between two statistically distinguishable phases, leading to the formation of small (∼170 nm), viscous (2.5× more viscous than surrounding areas), and transient domains in live cells. Moreover, our findings provide an understanding of how membrane compositional changes, i.e., cholesterol and phospholipids, affect domain formation. This imaging method can contribute to an improved understanding of spatiotemporal-controlled membrane dynamics at the molecular level.
Collapse
Affiliation(s)
- Jiseong Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Sejoo Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Jaeyong Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
6
|
Feng S, Park S, Choi YK, Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J Chem Theory Comput 2023; 19:2161-2185. [PMID: 37014931 PMCID: PMC10174225 DOI: 10.1021/acs.jctc.2c01246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/06/2023]
Abstract
Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes. Despite a wide range of membrane simulation studies, generating a complex membrane assembly remains challenging. Here, we review the capability of CHARMM-GUI Membrane Builder in the context of emerging research demands, as well as the application examples from the CHARMM-GUI user community, including membrane biophysics, membrane protein drug-binding and dynamics, protein-lipid interactions, and nano-bio interface. We also provide our perspective on future Membrane Builder development.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yeol Kyo Choi
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Feigenson GW, Enoki TA. Nano-scale domains in the plasma membrane are like macroscopic domains in asymmetric bilayers. Biophys J 2023; 122:925-930. [PMID: 36380589 PMCID: PMC10111217 DOI: 10.1016/j.bpj.2022.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Unfavorable lipid-lipid pairwise interactions between HiTm and LowTm lipids drive liquid-disordered (Ld) + liquid-ordered (Lo) phase separation. Large size of phase domains is opposed by lipid dipole repulsions, which are more significant compared with the pairwise interactions for naturally abundant LowTm lipids such as palmitoyl oleoyl phosphatidylcholine. During the nano-to-macro domain size transition, no lipid phase transition occurs, and measured properties of Ld + Lo nanodomains are found to be essentially the same as those of macrodomains. Use of macrodomains in mixtures to model cell plasma membranes (PM) is helpful, enabling study by optical microscopy. Use of asymmetric giant unilamellar vesicles to model a PM reveals that ordered phase domains in one leaflet induce ordered domains in an otherwise uniform phase in the apposing leaflet that models a cytoplasmic leaflet. Because macro and nano phase properties are so similar, we conclude that a cell PM that has nano-scale Ld + Lo phase domains in the exoplasmic leaflet is likely to induce nano-scale ordered domains in the cytoplasmic leaflet.
Collapse
Affiliation(s)
- Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University - Ithaca, Ithaca, New York.
| | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University - Ithaca, Ithaca, New York
| |
Collapse
|
8
|
Allender DW, Schick M. A Theoretical Basis for Nanodomains. J Membr Biol 2022; 255:451-460. [PMID: 35084528 DOI: 10.1007/s00232-021-00213-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023]
Abstract
We review the current theories of nanodomain, or "raft," formation. We emphasize that the idea that they are co-exisiting Lo and Ld phases is fraught with difficulties, as is the closely related idea that they are due to critical fluctuations. We then review an alternate theory that the plasma membrane is a two-dimensional microemulsion, and that the mechanism that drives to zero the line tension between Lo and Ld phases is the coupling of height and composition fluctuations. The theory yields rafts of SM and cholesterol in the outer leaf and POPS and POPC in the inner leaf. The "sea" between rafts consists of POPC in the outer leaf and POPE and cholesterol in the inner leaf. The characteristic size of the domain structures is tens of nanometers.
Collapse
Affiliation(s)
- D W Allender
- Department of Physics, University of Washington, Seattle, Washington, USA.,Department of Physics, Kent State University, Kent, OH, USA
| | - M Schick
- Department of Physics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
9
|
Sapp KC, Beaven AH, Sodt AJ. Spatial extent of a single lipid's influence on bilayer mechanics. Phys Rev E 2021; 103:042413. [PMID: 34005918 DOI: 10.1103/physreve.103.042413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
To what spatial extent does a single lipid affect the mechanical properties of the membrane that surrounds it? The lipid composition of a membrane determines its mechanical properties. The shapes available to the membrane depend on its compositional material properties, and therefore, the lipid environment. Because each individual lipid species' chemistry is different, it is important to know its range of influence on membrane mechanical properties. This is defined herein as the lipid's mechanical extent. Here, a lipid's mechanical extent is determined by quantifying lipid redistribution and the average curvature that lipid species experience on fluctuating membrane surfaces. A surprising finding is that, unlike unsaturated lipids, saturated lipids have a complicated, nonlocal effect on the surrounding surface, with the interaction strength maximal at a finite length-scale. The methodology provides the means to substantially enrich curvature-energy models of membrane structures, quantifying what was previously only conjecture.
Collapse
Affiliation(s)
- Kayla C Sapp
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20847, USA
| | - Andrew H Beaven
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20847, USA.,National Institute of General Medical Sciences, Bethesda, Maryland 20892, USA
| | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20847, USA
| |
Collapse
|
10
|
Sych T, Gurdap CO, Wedemann L, Sezgin E. How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity? MEMBRANES 2021; 11:323. [PMID: 33925240 PMCID: PMC8146956 DOI: 10.3390/membranes11050323] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Although liquid-liquid phase separation of cytoplasmic or nuclear components in cells has been a major focus in cell biology, it is only recently that the principle of phase separation has been a long-standing concept and extensively studied in biomembranes. Membrane phase separation has been reconstituted in simplified model systems, and its detailed physicochemical principles, including essential phase diagrams, have been extensively explored. These model membrane systems have proven very useful to study the heterogeneity in cellular membranes, however, concerns have been raised about how reliably they can represent native membranes. In this review, we will discuss how phase-separated membrane systems can mimic cellular membranes and where they fail to reflect the native cell membrane heterogeneity. We also include a few humble suggestions on which phase-separated systems should be used for certain applications, and which interpretations should be avoided to prevent unreliable conclusions.
Collapse
Affiliation(s)
| | | | | | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17165 Solna, Sweden; (T.S.); (C.O.G.); (L.W.)
| |
Collapse
|
11
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Enoki TA, Wu J, Heberle FA, Feigenson GW. Dataset of asymmetric giant unilamellar vesicles prepared via hemifusion: Observation of anti-alignment of domains and modulated phases in asymmetric bilayers. Data Brief 2021; 35:106927. [PMID: 33763508 PMCID: PMC7973298 DOI: 10.1016/j.dib.2021.106927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
The data provided with this paper are confocal fluorescence images of symmetric giant unilamellar vesicles (GUVs) and asymmetric giant unilamellar vesicles (aGUVs). In this work, aGUVs were prepared using the hemifusion method and are labelled with two different fluorescent dyes, named TFPC and DiD. Both dyes show strong preference for the liquid-disordered (Ld) phase instead of the liquid-ordered (Lo) phase. The partition of these dyes favoring the Ld phase leads to bright Ld phase and dark Lo phase domains in symmetric GUVs observed by fluorescence microscopy. In symmetric vesicles, the bright and the dark domains of the inner and the outer leaflets are aligned. In aGUVs, the fluorescent probe TFPC exclusively labels the aGUV outer leaflet. Here, we show a dataset of fluorescence micrographs obtained using scanning fluorescence confocal microscopy. For the system chosen, the fluorescence signal of TFPC and DiD show anti-alignment of the brighter domains on aGUVs. Important for this dataset, TFPC and DiD have fluorescence emission centered in the green and far-red region of the visible spectra, respectively, and the dyes’ fluorescence emission bands do not overlap. This dataset were collected in the same conditions of the dataset reported in the co-submitted work (Enoki, et al. 2021) where most of aGUVs show domains alignment. In addition, we show micrographs of GUVs displaying modulated phases and macrodomains. We also compare the modulated phases observed in GUVs and aGUVs. For these datasets, we collected a sequence of micrographs using confocal microscopy varying the z-position, termed a z-stack. Images were collected in a scanning microscope Nikon Eclipse C2+ (Nikon Instruments, Melville, NY). Additional samples used to measure the lipid concentrations and to prepare GUVs with accurate lipid fractions are also provided with this paper.
Collapse
Affiliation(s)
- Thais A Enoki
- Cornell University, United States.,University of Tennessee, United State
| | - Joy Wu
- Cornell University, United States
| | | | | |
Collapse
|
13
|
Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183586. [PMID: 33647248 DOI: 10.1016/j.bbamem.2021.183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
The plasma membrane (PM) is asymmetric in lipid composition. The distinct and characteristic lipid compositions of the exoplasmic and cytoplasmic leaflets lead to different lipid-lipid interactions and physical-chemical properties in each leaflet. The exoplasmic leaflet possesses an intrinsic ability to form coexisting ordered and disordered fluid domains, whereas the cytoplasmic leaflet seems to form a single fluid phase. To better understand the interleaflet interactions that influence domains, we compared asymmetric model membranes that capture salient properties of the PM with simpler symmetric membranes. Using asymmetric giant unilamellar vesicles (aGUVs) prepared by hemifusion with a supported lipid bilayer, we investigate the domain line tension that characterizes the behavior of coexisting ordered + disordered domains. The line tension can be related to the contact perimeter of the different phases. Compared to macroscopic phase separation, the appearance of modulated phases was found to be a robust indicator of a decrease in domain line tension. Symmetric GUVs of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/cholesterol (chol) were formed into aGUVs by replacing the GUV outer leaflet with DOPC/chol = 0.8/0.2 in order to create a cytoplasmic leaflet model. These aGUVs revealed lower line tension for the ordered + disordered domains of the exoplasmic model leaflet.
Collapse
|
14
|
Mei N, Robinson M, Davis JH, Leonenko Z. Melatonin Alters Fluid Phase Coexistence in POPC/DPPC/Cholesterol Membranes. Biophys J 2020; 119:2391-2402. [PMID: 33157120 DOI: 10.1016/j.bpj.2020.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The structure and biophysical properties of lipid membranes are important for cellular functions in health and disease. In Alzheimer's disease, the neuronal membrane is a target for toxic amyloid-β (Aβ). Melatonin is an important pineal gland hormone that has been shown to protect against Aβ toxicity in cellular and animal studies, but the molecular mechanism of this protection is not fully understood. Melatonin is a small membrane-active molecule that has been shown to interact with model lipid membranes and alter the membrane biophysical properties, such as membrane molecular order and dynamics. This effect of melatonin has been previously studied in simple model bilayers with one or two lipid components. To make it more relevant to neuronal membranes, we used a more complex ternary lipid mixture as our membrane model. In this study, we used 2H-NMR to investigate the effect of melatonin on the phase behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and cholesterol lipid membranes. We used deuterium-labeled POPC-d31 and DPPC-d62,separately to probe the changes in hydrocarbon chain order as a function of temperature and melatonin concentration. We find that POPC/DPPC/cholesterol at molar proportions of 3:3:2 is close to liquid-disordered/liquid-ordered phase separation and that melatonin can induce phase separation in these ternary mixtures by preferentially incorporating into the disordered phase and increasing its level of disorder. At 5 mol% melatonin, we observed phase separation in samples with POPC-d31, but not with DPPC-d62, whereas at 10 mol% melatonin, phase separation was observed in both samples with either POPC-d31 or DPPC-d62. These results indicate that melatonin can have a strong effect on membrane structure and physical properties, which may provide some clues to understanding how melatonin protects against Aβ, and that choice of chain perdeuteration is an important consideration from a technical point of view.
Collapse
Affiliation(s)
- Nanqin Mei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Morgan Robinson
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - James H Davis
- Department of Physics, University of Guelph, Guelph, Ontario, Canada.
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
15
|
Luo Y, Maibaum L. Modulated and spiral surface patterns on deformable lipid vesicles. J Chem Phys 2020; 153:144901. [PMID: 33086800 DOI: 10.1063/5.0020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigate the behavior of two-dimensional systems that exhibit a transition between homogeneous and spatially inhomogeneous phases, which have spherical topology, and whose mechanical properties depend on the local value of the order parameter. One example of such a system is multicomponent lipid bilayer vesicles, which serve as a model to study cellular membranes. Under certain conditions, such bilayers separate into coexisting liquid-ordered and liquid-disordered regions. When arranged into the shape of small vesicles, this phase coexistence can result in spatial patterns that are more complex than the basic two-domain configuration encountered in typical bulk systems. The difference in bending rigidity between the liquid-ordered and liquid-disordered regions couples the shape of the vesicle to the local composition. We show that this interplay gives rise to a rich phase diagram that includes homogeneous, separated, and axisymmetric modulated phases that are divided by regions of spiral patterns in the surface morphology.
Collapse
Affiliation(s)
- Yongtian Luo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
16
|
Dorrell MW, Beaven AH, Sodt AJ. A combined molecular/continuum-modeling approach to predict the small-angle neutron scattering of curved membranes. Chem Phys Lipids 2020; 233:104983. [PMID: 33035544 DOI: 10.1016/j.chemphyslip.2020.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
This paper develops a framework to compute the small-angle neutron scattering (SANS) from highly curved, dynamically fluctuating, and potentially inhomogeneous membranes. This method is needed to compute the scattering from nanometer-scale membrane domains that couple to curvature, as predicted by molecular modeling. The detailed neutron scattering length density of a small planar bilayer patch is readily available via molecular dynamics simulation. A mathematical, mechanical transformation of the planar scattering length density is developed to predict the scattering from curved bilayers. By simulating a fluctuating, curved, surface-continuum model, long time- and length-scales can be reached while, with the aid of the planar-to-curved transformation, the molecular features of the scattering length density can be retained. A test case for the method is developed by constructing a coarse-grained lipid vesicle following a protocol designed to relieve both the osmotic stress inside the vesicle and the lipid-number stress between the leaflets. A question was whether the hybrid model would be able to replicate the scattering from the highly deformed inner and outer leaflets of the small vesicle. Matching the scattering of the full (molecular vesicle) and hybrid (continuum vesicle) models indicated that the inner and outer leaflets of the full vesicle were expanded laterally, consistent with previous simulations of the Martini forcefield that showed thinning in small vesicles. The vesicle structure is inconsistent with a zero-tension leaflet deformed by a single set of elastic parameters, and the results show that this is evident in the scattering. The method can be applied to translate observations of any molecular model's neutron scattering length densities from small patches to large length and timescales.
Collapse
Affiliation(s)
- Mitchell W Dorrell
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, USA; Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
| | - Andrew H Beaven
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, USA
| | - Alexander J Sodt
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, USA.
| |
Collapse
|
17
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
18
|
Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc Natl Acad Sci U S A 2020; 117:19943-19952. [PMID: 32759206 DOI: 10.1073/pnas.2002200117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nanoscale organization of biological membranes into structurally and compositionally distinct lateral domains is believed to be central to membrane function. The nature of this organization has remained elusive due to a lack of methods to directly probe nanoscopic membrane features. We show here that cryogenic electron microscopy (cryo-EM) can be used to directly image coexisting nanoscopic domains in synthetic and bioderived membranes without extrinsic probes. Analyzing a series of single-component liposomes composed of synthetic lipids of varying chain lengths, we demonstrate that cryo-EM can distinguish bilayer thickness differences as small as 0.5 Å, comparable to the resolution of small-angle scattering methods. Simulated images from computational models reveal that features in cryo-EM images result from a complex interplay between the atomic distribution normal to the plane of the bilayer and imaging parameters. Simulations of phase-separated bilayers were used to predict two sources of contrast between coexisting ordered and disordered phases within a single liposome, namely differences in membrane thickness and molecular density. We observe both sources of contrast in biomimetic membranes composed of saturated lipids, unsaturated lipids, and cholesterol. When extended to isolated mammalian plasma membranes, cryo-EM reveals similar nanoscale lateral heterogeneities. The methods reported here for direct, probe-free imaging of nanodomains in unperturbed membranes open new avenues for investigation of nanoscopic membrane organization.
Collapse
|
19
|
Dorrell MW, Heberle FA, Katsaras J, Maibaum L, Lyman E, Sodt AJ. Laterally Resolved Small-Angle Scattering Intensity from Lipid Bilayer Simulations: An Exact and a Limited-Range Treatment. J Chem Theory Comput 2020; 16:5287-5300. [PMID: 32579370 DOI: 10.1021/acs.jctc.0c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When combined, molecular simulations and small-angle scattering experiments are able to provide molecular-scale resolution of structure. Separately, scattering experiments provide only intermingled pair correlations between atoms, while molecular simulations are limited by model quality and the relatively short time scales that they can access. Their combined strength relies on agreement between the experimental spectra and those computed by simulation. To date, computing the neutron spectra from a molecular simulation of a lipid bilayer is straightforward only if the structure is approximated by laterally averaging the in-plane bilayer structure. However, this neglects all information about lateral heterogeneity, e.g., clustering of components in a lipid mixture. This paper presents two methods for computing the scattering intensity of simulated bilayers with in-plane heterogeneity, enabling a full treatment of both the transverse and lateral bilayer structure for the first time. The first method, termed the Dirac Brush, computes the exact spectra including spurious artifacts resulting from using information from neighboring periodic cells to account for the long-range structure of the bilayer. The second method, termed PFFT, applies a mean-field treatment in the field far from a scattering element, resulting in a correlation range that can be tuned (eliminating correlations with neighboring periodic images), but with computational cost that prohibits obtaining the exact (Dirac Brush) spectra. Following their derivation, the two methods are applied to a coarse-grained molecular simulation of a bilayer inhomogeneity, demonstrating the contributions of lateral correlations to the resulting spectra.
Collapse
Affiliation(s)
- Mitchell W Dorrell
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, United States
| | | | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Huang J, Hiraki S, Feigenson GW. Calculation of Liquid-Disordered/Liquid-Ordered Line Tension from Pairwise Lipid Interactions. J Phys Chem B 2020; 124:4949-4959. [DOI: 10.1021/acs.jpcb.0c03329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. Huang
- Department of Physics and Astronomy, Texas Tech University, Box 41051, Lubbock, Texas 79409, United States
| | - S. Hiraki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - G. W. Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2937-2945. [PMID: 32175748 DOI: 10.1021/acs.langmuir.9b03893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alteration of lipid raft organization manifesting as phase separation is important for cellular processes, such as signaling and trafficking. Such behaviors and dynamics of lipid membranes can be affected by external stimuli including both physical and chemical stimuli. In this study, we focused on osmotic-tension-induced phase separation. The effects of osmotic tension on the phase behaviors of vesicles consisting of dioleoylphosphocholine (DOPC)/dipalmitoylphosphocholine (DPPC)/cholesterol (Chol) were quantitatively studied at different temperatures by fluorescence microscopy. We determined the ternary phase diagrams and found that tension leads to a shift in the miscibility temperature. Cholesterol plays a key role in determining the extent of this shift. In addition, we found that osmotic tension can enhance the line tension. The physicochemical mechanism of osmotic-pressure-induced phase separation is discussed.
Collapse
Affiliation(s)
- Nichaporn Wongsirojkul
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Pakorn Opaprakasit
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| |
Collapse
|
22
|
Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J Lipid Res 2020; 61:758-766. [PMID: 31964764 DOI: 10.1194/jlr.ra119000565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Indexed: 01/04/2023] Open
Abstract
The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.
Collapse
Affiliation(s)
- Guangtao Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Qing Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215. mailto:
| |
Collapse
|
23
|
Allender DW, Giang H, Schick M. Model Plasma Membrane Exhibits a Microemulsion in Both Leaves Providing a Foundation for "Rafts". Biophys J 2020; 118:1019-1031. [PMID: 32023433 DOI: 10.1016/j.bpj.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
We consider a model lipid plasma membrane, one that describes the outer leaf as consisting of sphingomyelin, phosphatidylcholine, and cholesterol and the inner leaf of phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, and cholesterol. Their relative compositions are taken from experiment; the cholesterol freely interchanges between leaves. Fluctuations in local composition are coupled to fluctuations in the local membrane curvature, as in the Leibler-Andelman mechanism. Structure factors of components in both leaves display a peak at nonzero wavevector. This indicates that the disordered fluid membrane is characterized by structure of the corresponding wavelength. The scale is given by membrane properties: its bending modulus and its surface tension, which arises from the membrane's connections to the cytoskeleton. From measurements on the plasma membrane, this scale is on the order of 100 nm. We find that the membrane can be divided into two different kinds of domains that differ not only in their composition but also in their curvature. The first domain in the outer, exoplasmic leaf is rich in cholesterol and sphingomyelin, whereas the inner, cytoplasmic leaf is rich in phosphatidylserine and phosphatidylcholine. The second kind of domain is rich in phosphatidylcholine in the outer leaf and in cholesterol and phosphatidylethanolamine in the inner leaf. The theory provides a tenable basis for the origin of structure in the plasma membrane and an illuminating picture of the organization of lipids therein.
Collapse
Affiliation(s)
- David W Allender
- Department of Physics, University of Washington, Seattle, Washington; Department of Physics, Kent State University, Kent, Ohio
| | - Ha Giang
- Department of Physics, University of Washington, Seattle, Washington; Viettel Aerospace Institute, Hanoi, Vietnam
| | - M Schick
- Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
24
|
Enoki TA, Feigenson GW. Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophys J 2019; 117:1037-1050. [PMID: 31493862 DOI: 10.1016/j.bpj.2019.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 01/03/2023] Open
Abstract
We describe a new method to prepare asymmetric giant unilamellar vesicles (aGUVs) via hemifusion. Hemifusion of giant unilamellar vesicles and a supported lipid bilayer, triggered by calcium, promotes the lipid exchange of the fused outer leaflets mediated by lipid diffusion. We used different fluorescent dyes to monitor the inner and the outer leaflets of the unsupported aGUVs. We confirmed that almost all newly exchanged lipids in the aGUVs are found in the outer leaflet of these asymmetric vesicles. In addition, we test the stability of the aGUVs formed by hemifusion in preserving their contents during the procedure. For aGUVs prepared from the hemifusion of giant unilamellar vesicles composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.39/0.39/0.22 and a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.8/0.2, we observed the exchanged lipids to alter the bilayer properties. To access the physical and chemical properties of the asymmetric bilayer, we monitored the dye partition coefficients of individual leaflets and the generalized polarization of the fluorescence probe 6-dodecanoyl-2-[ N-methyl-N-(carboxymethyl)amino] naphthalene, a sensor for the lipid packing/order of its surroundings. For a high percentage of lipid exchange (>70%), the dye partition indicates induced-disordered and induced-ordered domains. The induced domains have distinct lipid packing/order compared to the symmetric liquid-disordered and liquid-ordered domains.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
25
|
Enoki TA, Heberle FA, Feigenson GW. FRET Detects the Size of Nanodomains for Coexisting Liquid-Disordered and Liquid-Ordered Phases. Biophys J 2019; 114:1921-1935. [PMID: 29694869 DOI: 10.1016/j.bpj.2018.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 11/18/2022] Open
Abstract
Biomembranes with as few as three lipid components can form coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. In the coexistence region of Ld and Lo phases, the lipid mixtures 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/chol or brain sphingomyelin (bSM)/DOPC/chol form micron-scale domains that are easily visualized with light microscopy. Although large domains are not observed in the mixtures DSPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/chol and bSM/POPC/chol, lateral heterogeneity is nevertheless detected using techniques with nanometer-scale spatial resolution. We propose a simple and accessible method to measure domain sizes below optical resolution (∼200 nm). We measured nanodomain size for the latter two mixtures by combining experimental Förster resonance energy transfer data with a Monte-Carlo-based analysis. We found a domain radius of 7.5-10 nm for DSPC/POPC/chol, similar to values obtained previously by neutron scattering, and ∼5 nm for bSM/POPC/chol, slightly smaller than measurable by neutron scattering. These analyses also detect the domain-size transition that is observed by fluorescence microscopy in the four-component lipid mixture bSM/DOPC/POPC/chol. Accurate measurements of fluorescent-probe partition coefficients are especially important for the analysis; therefore, we exploit three different methods to measure the partition coefficient of fluorescent molecules between Ld and Lo phases.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Frederick A Heberle
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
26
|
Dang AT, Kuhl TL. Mind the Line Tension: New Criteria for Nanodomains in Biological Membranes. Biophys J 2019; 112:1291-1292. [PMID: 28402871 DOI: 10.1016/j.bpj.2017.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/01/2022] Open
Affiliation(s)
- Amanda T Dang
- Department of Materials Science and Engineering, University of California, Davis, California.
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California, Davis, California
| |
Collapse
|
27
|
Lee IH, Imanaka MY, Modahl EH, Torres-Ocampo AP. Lipid Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. ACS OMEGA 2019; 4:6551-6559. [PMID: 31179407 PMCID: PMC6547621 DOI: 10.1021/acsomega.9b00327] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 05/11/2023]
Abstract
Cell plasma membranes are a heterogeneous mixture of lipids and membrane proteins. The importance of heterogeneous lipid domains (also called lipid rafts) as a molecular sorting platform has been implicated in many physiological processes. Cell plasma membranes that are detached from the cytoskeletal structure spontaneously phase separate into distinct domains at equilibrium, which show their inherent demixing properties. Recently, researchers have discovered that proteins with strong interprotein interactions also spontaneously phase separate into distinct protein domains, thus enabling the maintenance of many membraneless organelles. Protein phase separation may also take place on the lipid membranes via lipid-anchored proteins, which suggests another potential molecular sorting platform for physiological processes on the cell membrane. When two-phase separation properties coexist physiologically, they may change the resulting phase behavior or serve as independent sorting platforms. In this paper, we used in vitro reconstitution and fluorescence imaging to systematically quantify the phase behavior that arises when proteins with inherent phase separation properties interact with raft mixture lipid membranes. Our observations and simulations show both that the proteins may enhance lipid phase separation and that this is a general property of phase-separating protein systems with a diverse number of components involved. This suggests that we should consider the overall effect of the properties of both membrane-anchored proteins and lipids when interpreting molecular sorting phenomena on the membranes.
Collapse
Affiliation(s)
- Il-Hyung Lee
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
- E-mail:
| | - Matthew Y. Imanaka
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
| | - Emmi H. Modahl
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
| | - Ana P. Torres-Ocampo
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts at Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
28
|
Luo Y, Maibaum L. Phase diagrams of multicomponent lipid vesicles: Effects of finite size and spherical geometry. J Chem Phys 2018; 149:174901. [DOI: 10.1063/1.5045499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongtian Luo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
30
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
31
|
Miyake M, Kakizawa Y, Tobori N, Kurioka M, Tabuchi N, Kon R, Shimokawa N, Tsujino Y, Takagi M. Membrane permeation of giant unilamellar vesicles and corneal epithelial cells with lipophilic vitamin nanoemulsions. Colloids Surf B Biointerfaces 2018; 169:444-452. [DOI: 10.1016/j.colsurfb.2018.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
|
32
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
33
|
Zhang Y, Chan C, Li Z, Ma J, Meng Q, Cheng X, Fan J. Lipid extraction by boron nitride nanosheets from liquid-ordered and liquid-disordered nanodomains. NANOSCALE 2018; 10:14073-14081. [PMID: 29999094 DOI: 10.1039/c8nr02018c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomically thin boron nitride nanosheets are important two-dimensional nanomaterials with great potential in biomedical applications. Understanding the basic interaction mechanisms between lipid domains and boron nitride nanosheets can help clarify the potential risks of these nanomaterials and thus provide guidance on the design of safe biomedical applications. Using molecular dynamics simulations, we demonstrate that the BNNS can disrupt the liquid disordered lipid bilayers much more easily compared to the liquid ordered phases. The potential of mean force profiles calculated from umbrella sampling further explain this adsorption preference. When the BNNS is placed at the boundary of the liquid ordered and liquid disordered nanodomains, disruption of the liquid ordered domains becomes much easier due to the presence of adjacent liquid disordered domains. Our findings provide new insights into the cytotoxicity of boron nitride nanosheets interacting with cellular membranes.
Collapse
Affiliation(s)
- Yonghui Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophys J 2018; 115:664-678. [PMID: 30082033 DOI: 10.1016/j.bpj.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023] Open
Abstract
Using Förster resonance energy transfer, raft/liquid-ordered-domain formation was assessed in asymmetric vesicles containing outer leaflets composed of high-Tm (melting temperature) saturated phosphatidylcholines (diC18:0PC, diC16:0PC, diC15:0PC, or diC14:0PC), low-Tm unsaturated dioleoylphosphatidylcholine (DOPC) and cholesterol, and inner leaflets composed of lipids that by themselves would not form ordered domains (DOPC and cholesterol). Ordered-domain formation in the outer leaflet was compared to that in symmetric vesicles with the same lipid composition as the asymmetric vesicle outer leaflets. The difference between ordered-domain thermal stability in asymmetric and symmetric vesicles was highly dependent on high-Tm PC acyl-chain length. At one extreme, in diC14:0PC-containing asymmetric vesicles, the outer leaflet did not segregate to form ordered domains over the entire experimental temperature range even though ordered domains formed in the symmetric vesicles, indicating the inner leaflet dominated outer-leaflet physical behavior in the asymmetric vesicles. At the other extreme, in diC18:0PC-containing asymmetric vesicles, ordered domains formed over the entire temperature range at which they were present in symmetric vesicles, indicating the inner leaflet did not dominate outer-leaflet physical behavior. DiC15:0PC- and diC16:0PC-containing vesicles exhibited intermediate behaviors. A different set of vesicles was prepared with high-Tm lipid sphingomyelin (SM) in place of saturated phosphatidylcholine, and the % SM was varied. The thermal stability of outer-leaflet ordered domains in asymmetric vesicles was found to decrease more than in symmetric vesicles as SM levels decreased, indicating that the inner leaflet increasingly dominated outer leaflet physical state as SM levels decreased. Overall, inhibition of outer-leaflet ordered-domain formation in asymmetric vesicles by inner-leaflet lipids decreased as the ability of outer-leaflet lipids to form an ordered state by themselves increased, i.e., when outer-leaflet high-Tm lipid content or acyl-chain length increased. This has implications for how ordered-domain formation may be controlled in vivo.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
35
|
Cornell CE, Skinkle AD, He S, Levental I, Levental KR, Keller SL. Tuning Length Scales of Small Domains in Cell-Derived Membranes and Synthetic Model Membranes. Biophys J 2018; 115:690-701. [PMID: 30049406 DOI: 10.1016/j.bpj.2018.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023] Open
Abstract
Micron-scale, coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases are straightforward to observe in giant unilamellar vesicles (GUVs) composed of ternary lipid mixtures. Experimentally, uniform membranes undergo demixing when temperature is decreased: domains subsequently nucleate, diffuse, collide, and coalesce until only one domain of each phase remains. The sizes of these two domains are limited only by the size of the system. Under different conditions, vesicles exhibit smaller-scale domains of fixed sizes, leading to the question of what sets the length scale. In membranes with excess area, small domains are expected when coarsening is hindered or when a microemulsion or modulated phase arises. Here, we test predictions of how the size, morphology, and fluorescence levels of small domains vary with the membrane's temperature, tension, and composition. Using GUVs and cell-derived giant plasma membrane vesicles, we find that 1) the characteristic size of domains decreases when temperature is increased or membrane tension is decreased, 2) stripes are favored over circular domains for lipid compositions with low energy per unit interface, 3) fluorescence levels are consistent with domain registration across both monolayer leaflets of the bilayer, and 4) small domains form in GUVs composed of lipids both with and without ester-linked lipids. Our experimental results are consistent with several elements of current theories for microemulsions and modulated phases and inconsistent with others, suggesting a motivation to modify or enhance current theories.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, Washington
| | | | - Shushan He
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
36
|
Luo Y, Maibaum L. Relating the structure factors of two-dimensional materials in planar and spherical geometries. SOFT MATTER 2018; 14:5686-5692. [PMID: 29947410 DOI: 10.1039/c8sm00978c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Scattering structure factors provide essential insight into material properties and are routinely obtained in experiments, computer simulations, and theoretical analyses. Different approaches favor different geometries of the material. In case of lipid bilayers, scattering experiments can be performed on spherical vesicles, while simulations and theory often consider planar membrane patches. We derive an approximate relationship between the structure functions of such a material in planar and spherical geometries. We illustrate the usefulness of this relationship in a case study of a Gaussian material that supports both homogeneous and microemulsion phases. Within its range of applicability, this relationship enables a model-free comparison of structure factors of the same material in different geometries.
Collapse
Affiliation(s)
- Yongtian Luo
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
37
|
Bennett WFD, Shea JE, Tieleman DP. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes. Biophys J 2018; 114:2595-2605. [PMID: 29874610 PMCID: PMC6129184 DOI: 10.1016/j.bpj.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation.
Collapse
Affiliation(s)
- W F Drew Bennett
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California.
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
38
|
Yu Q, Sun J, Huang S, Chang H, Bai Q, Chen YX, Liang D. Inward Budding and Endocytosis of Membranes Regulated by de Novo Designed Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6183-6193. [PMID: 29733597 DOI: 10.1021/acs.langmuir.8b00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein-mediated endocytosis of membrane is a key event in biological system. The mechanism, however, is still not clear. Using a de novo designed bola-type peptide KKKLLLLLLLLKKK (K3L8K3) as a protein mimic, we studied how it induced giant unilamellar vesicle (GUV) to form inward buds or endocytosis at varying conditions. Results show that the inward budding is initiated as the charged lipids are neutralized by K3L8K3, which results in a negative spontaneous curvature. If the charged lipids have unsaturated tails, the buddings are slim fibrils, which can further wrap into a spherical structure. In the case of saturated charged lipids, the buddings are rigid tubules, stable in the studied time period. The unsaturated lipid to saturated lipid ratio in the mother membrane is another key parameter governing the shape and dynamics of the buds. A complete endocytosis is observed when K3L8K3 is attached with a hydrophobic moiety, suggesting that hydrophobic interaction helps the buds to detach from the mother membrane. The molecules in the surrounding medium, such as negatively charged oligonucleotides, are engulfed into the GUV via endocytosis pathway induced by K3L8K3. Our study provides a novel strategy for illustrating the endocytosis mechanism by using peptides of simple sequence.
Collapse
|
39
|
He S, Maibaum L. Identifying the Onset of Phase Separation in Quaternary Lipid Bilayer Systems from Coarse-Grained Simulations. J Phys Chem B 2018; 122:3961-3973. [DOI: 10.1021/acs.jpcb.8b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shushan He
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| |
Collapse
|
40
|
Fanani ML, Wilke N. Regulation of phase boundaries and phase-segregated patterns in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1972-1984. [PMID: 29505769 DOI: 10.1016/j.bbamem.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
Demixing of components has long been described in model membranes. It is a consequence of non-ideal lateral interactions between membrane components, and it causes the presence of segregated phases, forming patches (domains) of different properties, thus introducing heterogeneity into the membrane. In the present review we first describe the processes through which domains are generated, how they grow, and why they are rounded, striped or fractal-like, as well as why they get distributed forming defined patterns. Next, we focus on the effect of an additive on a lipid mixture, which usually induces shifts in demixing points, thus stabilizing or destabilizing the phase-segregated state. Results found for different model membranes are summarized, detailing the ways in which phase segregation and the generated patterns may be modulated. We focus on which are, from our viewpoint, the most relevant regulating factors affecting the surface texture observed in model membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- María Laura Fanani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
41
|
Mitra ED, Whitehead SC, Holowka D, Baird B, Sethna JP. Computation of a Theoretical Membrane Phase Diagram and the Role of Phase in Lipid-Raft-Mediated Protein Organization. J Phys Chem B 2018; 122:3500-3513. [PMID: 29432021 DOI: 10.1021/acs.jpcb.7b10695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid phase heterogeneity in the plasma membrane is thought to be crucial for many aspects of cell signaling, but the physical basis of participating membrane domains such as "lipid rafts" remains controversial. Here we consider a lattice model yielding a phase diagram that includes several states proposed to be relevant for the cell membrane, including microemulsion-which can be related to membrane curvature-and Ising critical behavior. Using a neural-network-based machine learning approach, we compute the full phase diagram of this lattice model. We analyze selected regions of this phase diagram in the context of a signaling initiation event in mast cells: recruitment of the membrane-anchored tyrosine kinase Lyn to a cluster of transmembrane IgE-FcεRI receptors. We find that model membrane systems in microemulsion and Ising critical states can mediate roughly equal levels of kinase recruitment (binding energy ∼ -0.6 kB T), whereas a membrane near a tricritical point can mediate a much stronger kinase recruitment (-1.7 kB T). By comparing several models for lipid heterogeneity within a single theoretical framework, this work points to testable differences between existing models. We also suggest the tricritical point as a new possibility for the basis of membrane domains that facilitate preferential partitioning of signaling components.
Collapse
Affiliation(s)
- Eshan D Mitra
- Department of Chemistry and Chemical Biology , Cornell University , 122 Baker Laboratory , Ithaca , New York 14853 , United States
| | - Samuel C Whitehead
- Department of Physics , Cornell University , 109 Clark Hall , Ithaca , New York 14853 , United States
| | - David Holowka
- Department of Chemistry and Chemical Biology , Cornell University , 122 Baker Laboratory , Ithaca , New York 14853 , United States
| | - Barbara Baird
- Department of Chemistry and Chemical Biology , Cornell University , 122 Baker Laboratory , Ithaca , New York 14853 , United States
| | - James P Sethna
- Department of Physics , Cornell University , 109 Clark Hall , Ithaca , New York 14853 , United States
| |
Collapse
|
42
|
Shimokawa N, Mukai R, Nagata M, Takagi M. Formation of modulated phases and domain rigidification in fatty acid-containing lipid membranes. Phys Chem Chem Phys 2018; 19:13252-13263. [PMID: 28492655 DOI: 10.1039/c7cp01201b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the phase behavior of lipid membranes containing fatty acids (FAs) by microscopy and differential scanning calorimetry. We used palmitic acid (saturated FA), oleic acid (cis-isomer of unsaturated FA), elaidic acid (trans-isomer of unsaturated FA), and phytanic acid (branched FA) and examined the effects of FAs on phase-separated structures in lipid bilayer membranes consisting of dioleolylphosphocholine (DOPC)/dipalmitoylphosphocholine (DPPC)/cholesterol (Chol). Palmitic acid and elaidic acid exclude Chol from the DPPC-rich phase. As a result, the liquid-ordered phase formed by DPPC and Chol transforms into a solid-ordered phase. Oleic acid and phytanic acid significantly reduce the line tension at the liquid domain boundary. This decrease in line tension leads to the formation of modulated phases, such as striped, hexagonal, and polygonal domains. We measured the line tension and the interdomain interaction in these specific domains by an image analysis. The result showed that oleic acid and phytanic acid-containing vesicles as well as palmitic acid-containing vesicles are not spherical, and this domain-induced deformation is explained theoretically.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan.
| | | | | | | |
Collapse
|
43
|
Baoukina S, Rozmanov D, Tieleman DP. Composition Fluctuations in Lipid Bilayers. Biophys J 2018; 113:2750-2761. [PMID: 29262367 PMCID: PMC5770567 DOI: 10.1016/j.bpj.2017.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Cell membranes contain multiple lipid and protein components having heterogeneous in-plane (lateral) distribution. Nanoscale rafts are believed to play an important functional role, but their phase state—domains of coexisting phases or composition fluctuations—is unknown. As a step toward understanding lateral organization of cell membranes, we investigate the difference between nanoscale domains of coexisting phases and composition fluctuations in lipid bilayers. We simulate model lipid bilayers with the MARTINI coarse-grained force field on length scales of tens of nanometers and timescales of tens of microseconds. We use a binary and a ternary mixture: a saturated and an unsaturated lipid, or a saturated lipid, an unsaturated lipid, and cholesterol, respectively. In these mixtures, the phase behavior can be tuned from a mixed state to a coexistence of a liquid-crystalline and a gel, or a liquid-ordered and a liquid-disordered phase. Transition from a two-phase to a one-phase state is achieved by raising the temperature and adding a hybrid lipid (with a saturated and an unsaturated chain). We analyze the evolution of bilayer properties along this transition: domains of two phases transform to fluctuations with local ordering and compositional demixing. Nanoscale domains and fluctuations differ in several properties, including interleaflet overlap and boundary length. Hybrid lipids show no enrichment at the boundary, but decrease the difference between the coexisting phases by ordering the disordered phase, which could explain their role in cell membranes.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Dmitri Rozmanov
- Department of Information Technologies, University of Calgary, Calgary, Alberta, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
44
|
Yang K, Yang R, Tian X, He K, Filbrun SL, Fang N, Ma Y, Yuan B. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer. Phys Chem Chem Phys 2018; 20:28241-28248. [DOI: 10.1039/c8cp05710a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Partitioning of nanoparticles into different lipid phases of a cell membrane is regulated by the physical properties of both the membrane and nanoparticles.
Collapse
Affiliation(s)
- Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
- Jiangsu Key Laboratory of Thin Films
| | - Ran Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
| | - Xiaodong Tian
- Department of Thoracic Surgery
- Chinese PLA General Hospital
- Beijing
- P. R. China
| | - Kejie He
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
| | | | - Ning Fang
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | - Yuqiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
- Jiangsu Key Laboratory of Thin Films
| |
Collapse
|
45
|
Schick M. Strongly Correlated Rafts in Both Leaves of an Asymmetric Bilayer. J Phys Chem B 2017; 122:3251-3258. [DOI: 10.1021/acs.jpcb.7b08890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Schick
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, United States
| |
Collapse
|
46
|
Taylor GJ, Heberle FA, Seinfeld JS, Katsaras J, Collier CP, Sarles SA. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10016-10026. [PMID: 28810118 DOI: 10.1021/acs.langmuir.7b02022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interface bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ∼38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.
Collapse
Affiliation(s)
- Graham J Taylor
- Department of Mechanical, Aerospace, and Biomedical Engineering, and §Department of Physics and Astronomy, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, ⊥Biology and Soft Matter Division, #Shull Wollan Center-A Joint Center for Neutron Sciences, and ∇Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Frederick A Heberle
- Department of Mechanical, Aerospace, and Biomedical Engineering, and §Department of Physics and Astronomy, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, ⊥Biology and Soft Matter Division, #Shull Wollan Center-A Joint Center for Neutron Sciences, and ∇Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Jason S Seinfeld
- Department of Mechanical, Aerospace, and Biomedical Engineering, and §Department of Physics and Astronomy, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, ⊥Biology and Soft Matter Division, #Shull Wollan Center-A Joint Center for Neutron Sciences, and ∇Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Department of Mechanical, Aerospace, and Biomedical Engineering, and §Department of Physics and Astronomy, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, ⊥Biology and Soft Matter Division, #Shull Wollan Center-A Joint Center for Neutron Sciences, and ∇Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - C Patrick Collier
- Department of Mechanical, Aerospace, and Biomedical Engineering, and §Department of Physics and Astronomy, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, ⊥Biology and Soft Matter Division, #Shull Wollan Center-A Joint Center for Neutron Sciences, and ∇Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, and §Department of Physics and Astronomy, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, ⊥Biology and Soft Matter Division, #Shull Wollan Center-A Joint Center for Neutron Sciences, and ∇Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
47
|
Caritá AC, Mattei B, Domingues CC, de Paula E, Riske KA. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7312-7321. [PMID: 28474888 DOI: 10.1021/acs.langmuir.7b01134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Under certain conditions, biological membranes exhibit resistance to solubilization, even at high detergent concentration. These insoluble fragments are enriched in sphingolipids, cholesterol, and certain proteins having a preference for more organized environments. Here we investigated the effect of detergent Triton X-100 (TX-100) on raft-like lipid mixtures composed of POPC (palmitoyl oleoyl phosphatidylcholine, an unsaturated lipid), SM (sphingomyelin, a saturated lipid), and cholesterol, focusing on the detergent-induced phase separation at subsolubilizing concentration and the extent of solubilization at higher concentration. Giant unilamellar vesicles (GUVs) of POPC/SM/chol containing a fluorescent probe known to prefer the liquid-disordered phase were prepared and observed with fluorescence microscopy. A phase diagram constructed in the presence and absence of 0.1 mM TX-100 showed that the detergent induces macroscopic liquid-ordered/liquid-disordered (Lo/Ld) phase separation over a wide range of membrane composition, indicating that TX-100 has the ability to rearrange the lateral heterogeneity of the lipid mixture. The extent of solubilization of the POPC/SM/chol GUVs was quantified by measuring the vesicle size before and after the injection of a high concentration of TX-100. In parallel, the solubilization extent of large unilamellar vesicles (LUVs) was assessed by turbidity measurements. The extent of solubilization decreases significantly as the fractions of SM and cholesterol in the mixture increase. The origin of the detergent resistance is the low partitioning of TX-100 in cholesterol-rich membranes, especially in SM-containing ones, as evidenced by isothermal titration calorimetry experiments on LUVs. Our results provide a guide to future research on the effects of TX-100 on raft-like lipid mixtures.
Collapse
Affiliation(s)
- Amanda C Caritá
- Departamento de Biofísica, Universidade Federal de São Paulo , Sao Paulo, Brazil
| | - Bruno Mattei
- Departamento de Biofísica, Universidade Federal de São Paulo , Sao Paulo, Brazil
| | - Cleyton C Domingues
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP Brazil
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo , Sao Paulo, Brazil
| |
Collapse
|
48
|
Heberle FA, Pabst G. Complex biomembrane mimetics on the sub-nanometer scale. Biophys Rev 2017; 9:353-373. [PMID: 28717925 PMCID: PMC5578918 DOI: 10.1007/s12551-017-0275-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. In particular, we focus on: (1) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function of a size transition from nanoscopic to macroscopic domains; (2) membrane-mediated protein partitioning into lipid domains; (3) the role of the aqueous medium in tuning interactions between membranes and domains; and (4) leaflet-specific structure in asymmetric bilayers and passive lipid flip-flop.
Collapse
Affiliation(s)
- Frederick A Heberle
- The Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.,Joint Institute for Biological Sciences and Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, 8010, Graz, Austria. .,BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
49
|
Thermal Stability of Phase-Separated Domains in Multicomponent Lipid Membranes with Local Anesthetics. MEMBRANES 2017; 7:membranes7030033. [PMID: 28661445 PMCID: PMC5618118 DOI: 10.3390/membranes7030033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022]
Abstract
The functional mechanisms of local anesthetics (LAs) have not yet been fully explained, despite their importance in modern medicine. Recently, an indirect interaction between channel proteins and LAs was proposed as follows: LAs alter the physical properties of lipid membranes, thus affecting the channel proteins. To examine this hypothesis, we investigated changes in thermal stability in lipid membranes consisting of dioleoylphosphocholine, dipalmitoylphosphocholine, and cholesterol by adding the LAs, lidocaine and tetracaine. The miscibility temperature of liquid-ordered (Lo) and liquid-disordered (Ld) phase separation was lowered, whereas that of phase separation between solid-ordered (So) and Ld phases was unchanged by LAs. Furthermore, we measured the line tension at the Lo/Ld interface from domain boundary fluctuation and found that it was significantly decreased by LAs. Finally, differential scanning calorimetry (DSC) revealed a change in the lipid main transition temperature on the addition of LAs. Based on the DSC measurements, we considered that LAs are partitioned into two coexisting phases.
Collapse
|
50
|
Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line. Biophys J 2017; 113:1212-1222. [PMID: 28552311 DOI: 10.1016/j.bpj.2017.04.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022] Open
Abstract
Cells can alter the lipid content of their plasma membranes upon changes in their environment to maintain and adjust membrane function. Recent work suggests that some membrane functions arise because cellular plasma membranes are poised close to a miscibility transition under growth conditions. Here we report experiments utilizing giant plasma membrane vesicles (GPMVs) to explore how membrane transition temperature varies with growth temperature in a zebrafish cell line (ZF4) that can be adapted for growth between 20 and 32°C. We find that GPMV transition temperatures adjust to be 16.7 ± 1.2°C below growth temperature for four growth temperatures investigated and that adjustment occurs over roughly 2 days when temperature is abruptly lowered from 28 to 20°C. We also find that GPMVs have slightly different lipidomes when isolated from cells adapted for growth at 28 and 20°C. Similar to past work in vesicles derived from mammalian cells, fluctuating domains are observed in ZF4-derived GPMVs, consistent with their having critical membrane compositions. Taken together, these experimental results suggest that cells in culture biologically tune their membrane composition in a way that maintains specific proximity to a critical miscibility transition.
Collapse
|