1
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Wordom update 2: A user-friendly program for the analysis of molecular structures and conformational ensembles. Comput Struct Biotechnol J 2023; 21:1390-1402. [PMID: 36817953 PMCID: PMC9929209 DOI: 10.1016/j.csbj.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
We present the second update of Wordom, a user-friendly and efficient program for manipulation and analysis of conformational ensembles from molecular simulations. The actual update expands some of the existing modules and adds 21 new modules to the update 1 published in 2011. The new adds can be divided into three sets that: 1) analyze atomic fluctuations and structural communication; 2) explore ion-channel conformational dynamics and ionic translocation; and 3) compute geometrical indices of structural deformation. Set 1 serves to compute correlations of motions, find geometrically stable domains, identify a dynamically invariant core, find changes in domain-domain separation and mutual orientation, perform wavelet analysis of large-scale simulations, process the output of principal component analysis of atomic fluctuations, perform functional mode analysis, infer regions of mechanical rigidity, analyze overall fluctuations, and perform the perturbation response scanning. Set 2 includes modules specific for ion channels, which serve to monitor the pore radius as well as water or ion fluxes, and measure functional collective motions like receptor twisting or tilting angles. Finally, set 3 includes tools to monitor structural deformations by computing angles, perimeter, area, volume, β-sheet curvature, radial distribution function, and center of mass. The ring perception module is also included, helpful to monitor supramolecular self-assemblies. This update places Wordom among the most suitable, complete, user-friendly, and efficient software for the analysis of biomolecular simulations. The source code of Wordom and the relative documentation are available under the GNU general public license at http://wordom.sf.net.
Collapse
|
3
|
Mechanical variations in proteins with large-scale motions highlight the formation of structural locks. J Struct Biol 2018; 203:195-204. [DOI: 10.1016/j.jsb.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
|
4
|
Alavi Z, Zocchi G. Dissipation at the angstrom scale: Probing the surface and interior of an enzyme. Phys Rev E 2018; 97:052402. [PMID: 29906977 DOI: 10.1103/physreve.97.052402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 06/08/2023]
Abstract
Pursuing a materials science approach to understanding the deformability of enzymes, we introduce measurements of the phase of the mechanical response function within the nanorheology paradigm. Driven conformational motion of the enzyme is dissipative as characterized by the phase measurements. The dissipation originates both from the surface hydration layer and the interior of the molecule, probed by examining the effect of point mutations on the mechanics. We also document changes in the mechanics of the enzyme examined, guanylate kinase, upon binding its four substrates. GMP binding stiffens the molecule, ATP and ADP binding softens it, while there is no clear mechanical signature of GDP binding. A hyperactive two-Gly mutant is found to possibly trade specificity for speed. Global deformations of enzymes are shown to be dependent on both hydration layer and polypeptide chain dynamics.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Physics and Astronomy, Loyola Marymount University Los Angeles, Los Angeles, California 90095, USA
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr 169 perturbs mycobacterial guanylate kinase activity. Biosci Rep 2017; 37:BSR20171048. [PMID: 28963370 PMCID: PMC5686395 DOI: 10.1042/bsr20171048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.
Collapse
|
6
|
Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21080984. [PMID: 27483215 PMCID: PMC6274484 DOI: 10.3390/molecules21080984] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022] Open
Abstract
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Collapse
|
7
|
Zhang Y, Niu H, Li Y, Chu H, Shen H, Zhang D, Li G. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation. Sci Rep 2015; 5:8405. [PMID: 25672880 PMCID: PMC4325336 DOI: 10.1038/srep08405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/16/2015] [Indexed: 01/31/2023] Open
Abstract
Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simulations, we provide a comprehensive description of the conformational transitions of the enzyme after mutating serine to proline. Our results suggest that the serine plays a crucial role in maintaining the closed conformation of wild-type GK and the GMP recognition. On the contrary, the S→P mutant exhibits a stable open conformation and loses the ability of ligand binding, which explains its functional transition from the GK enzyme to the GK domain. Furthermore, the free energy profiles (FEPs) obtained by metadymanics clearly demonstrate that the open-closed conformational transition in WT GK is positive correlated with the process of GMP binding, indicating the GMP-induced closing motion of GK enzyme, which is not observed in the mutant. In addition, the FEPs show that the S→P mutation can also leads to the mis-recognition of GMP, explaining the vanishing of catalytic activity of the mutant.
Collapse
Affiliation(s)
- Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian 116023, P.R. China
| | - Huiyan Niu
- Department of Geriatrics, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping, Shenyang 110004, P. R. China
| | - Yan Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian 116023, P.R. China
| | - Huiying Chu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian 116023, P.R. China
| | - Hujun Shen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian 116023, P.R. China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian 116023, P.R. China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian 116023, P.R. China
| |
Collapse
|
8
|
Ariyaratne A, Wu C, Tseng CY, Zocchi G. Dissipative dynamics of enzymes. PHYSICAL REVIEW LETTERS 2014; 113:198101. [PMID: 25415926 DOI: 10.1103/physrevlett.113.198101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 06/04/2023]
Abstract
We explore enzyme conformational dynamics at sub-Å resolution, specifically, temperature effects. The ensemble-averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor of 2 as the temperature is raised from 10 to 45 °C; the elastic parameter K shows a similar decrease. Thus, when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.
Collapse
Affiliation(s)
- Amila Ariyaratne
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Chenhao Wu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Chiao-Yu Tseng
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Seyler SL, Beckstein O. Sampling large conformational transitions: adenylate kinase as a testing ground. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.919497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Sacquin-Mora S. Motions and mechanics: investigating conformational transitions in multi-domain proteins with coarse-grain simulations. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.843176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
11
|
Teze D, Hendrickx J, Dion M, Tellier C, Woods VL, Tran V, Sanejouand YH. Conserved Water Molecules in Family 1 Glycosidases: A DXMS and Molecular Dynamics Study. Biochemistry 2013; 52:5900-10. [DOI: 10.1021/bi400260b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David Teze
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Johann Hendrickx
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Michel Dion
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Charles Tellier
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Virgil L. Woods
- Department of Medicine, University of California−San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0652, United States
| | - Vinh Tran
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | | |
Collapse
|
12
|
Affiliation(s)
- Chiao-Yu Tseng
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles,
California 90095-1547, United States
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles,
California 90095-1547, United States
| |
Collapse
|
13
|
Wang Y, Zocchi G. Viscoelastic transition and yield strain of the folded protein. PLoS One 2011; 6:e28097. [PMID: 22174767 PMCID: PMC3234265 DOI: 10.1371/journal.pone.0028097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/01/2011] [Indexed: 11/19/2022] Open
Abstract
For proteins, the mechanical properties of the folded state are directly related to function, which generally entails conformational motion. Through sub-Angstrom resolution measurements of the AC mechanical susceptibility of a globular protein we describe a new fundamental materials property of the folded state. For increasing amplitude of the forcing, there is a reversible transition from elastic to viscoelastic response. At fixed frequency, the amplitude of the deformation is piecewise linear in the force, with different slopes in the elastic and viscoelastic regimes. Effectively, the protein softens beyond a yield point defined by this transition. We propose that ligand induced conformational changes generally operate in this viscoelastic regime, and that this is a universal property of the folded state.
Collapse
Affiliation(s)
- Yong Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|