1
|
Giustozzi M, Freytes SN, Jaskolowski A, Lichy M, Mateos J, Falcone Ferreyra ML, Rosano GL, Cerdán P, Casati P. Arabidopsis mediator subunit 17 connects transcription with DNA repair after UV-B exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1047-1067. [PMID: 35220621 DOI: 10.1111/tpj.15722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Mediator 17 (MED17) is a subunit of the Mediator complex that regulates transcription initiation in eukaryotic organisms. In yeast and humans, MED17 also participates in DNA repair, physically interacting with proteins of the nucleotide excision DNA repair system, but this function in plants has not been investigated. We studied the role of MED17 in Arabidopsis plants exposed to UV-B radiation. Our results demonstrate that med17 and OE MED17 plants have altered responses to UV-B, and that MED17 participates in various aspects of the DNA damage response (DDR). Comparison of the med17 transcriptome with that of wild-type (WT) plants showed that almost one-third of transcripts with altered expression in med17 plants were also changed by UV-B exposure in WT plants. Increased sensitivity to DNA damage after UV-B in med17 plants could result from the altered regulation of UV-B responsive transcripts but MED17 also physically interacts with DNA repair proteins, suggesting a direct role of this Mediator subunit during repair. Finally, we show that MED17 is necessary to regulate the DDR activated by ataxia telangiectasia and Rad3 related (ATR), and that programmed cell death 5 (PDCD5) overexpression reverts the deficiencies in DDR shown in med17 mutants. Our data demonstrate that MED17 is an important regulator of DDR after UV-B irradiation in Arabidopsis.
Collapse
Affiliation(s)
- Marisol Giustozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | | | - Aime Jaskolowski
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Micaela Lichy
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Julieta Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Pablo Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Casati
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
2
|
Jiao JF, Chang HC, Wang RQ. Chronotherapy for the p53 system under DNA damage response. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1999649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- J. F. Jiao
- School of Mathematics, Zhengzhou University of Aeronautics, Zhengzhou, China
| | - H. C. Chang
- School of Economics, Zhengzhou University of Aeronautics, Zhengzhou, China
| | - R. Q. Wang
- Department of Mathematics, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Wanlin W, Chun M, Juan X. [rhPDCD5 suppresses pro-inflammatory cytokine secretion and proliferation and induces apoptosis of activated lymphocytes from rats with collagen-induced arthritis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:627-632. [PMID: 31270039 DOI: 10.12122/j.issn.1673-4254.2019.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of recombinant human PDCD5 (rhPDCD5) treatment in a rat model of bovine II collagen (CII)-induced arthritis (CIA) on inflammatory cytokine secretion, proliferation and apoptosis of activated lymphocytes and explore the mechanisms of rhPDCD5-induced immunosuppression on activated lymphocytes. METHODS Female Wistar rats were randomly divided into normal control group, CIA+ ovalbumin (OVA) group, CIA+ rhTNFR: Fc group, and CIA+rhPDCD5 group. The rats in the latter 3 groups received intraperitoneal injections of OVA (14 mg/kg), rhTNFR: Fc (3.5 mg/kg) or rhPDCD5 (14 mg/kg) from day 2 to day 26 following CII injection. On day 28, the spleens of the rats were harvested for preparing single cell suspensions of splenocytes, which were activated by CII (20μg/mL) or anti-CD3 (1μg/mL)+ anti-CD28 (2μg/mL) for 48 h and 72 h. The production of interferon-γ(IFN-γ) and interleukin-17A (IL-17A) by the activated lymphocytes was determined by ELISA of the culture supernatants. The proliferation and apoptosis of the activated lymphocytes were assessed using [3H]-thymidine incorporation assay and flow cytometry, respectively. RESULTS Compared with those in CIA + OVA group, IFN-γand IL-17A secretions by the activated lymphocytes from rhPDCD5-treated CIA rats significantly decreased. RhPDCD5 treatment of the CIA rats obviously suppressed the proliferation and promoted apoptosis of the lymphocytes activated by CII or by anti-CD3 + anti-CD28. CONCLUSIONS rhPDCD5 reduces pro-inflammatory cytokine secretion, inhibits the proliferation and promotes activation-induced cell death of activated CD4 + lymphocytes to produce immunosuppression in rat models of CIA.
Collapse
Affiliation(s)
- Wang Wanlin
- Zaoyang First People's Hospital, Hubei University of Arts and Science, Xiangyang 441200, China.,Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Mao Chun
- Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Xiao Juan
- Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| |
Collapse
|
4
|
Lee EJ, Shin SH, Kang SS. Tip60 Tumor Suppressor Requires Its NLS Motif to Interact with Importin <i>α</i>. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/cellbio.2019.81001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Diao X, Wang J, Zhu H, He B. Overexpression of programmed cell death 5 in a mouse model of ovalbumin-induced allergic asthma. BMC Pulm Med 2016; 16:149. [PMID: 27846830 PMCID: PMC5109699 DOI: 10.1186/s12890-016-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Programmed cell death 5 (PDCD5) was first identified as an apoptosis-promoting protein and involved in some autoimmune diseases and inflammatory processes. Our previous study demonstrated greater expression of serum PDCD5 in asthmatic patients than controls. This study aimed to further explore the significance of PDCD5 in mice with induced allergic asthma. Methods We divided 16 female mice into 2 groups: control (n = 8) and allergen (ovalbumin, OVA)-challenged mice (n = 8). The modified ovalbumin inhalation method was used to generate the allergic asthma mouse model, and the impact of OVA was assessed by histology of lung tissue and morphometry. The number of cells in bronchoalveolar lavage fluid (BALF) was detected. Pulmonary function was measured by pressure sensors. PDCD5 and active caspase-3 levels were detected. Results The expression of PDCD5 was higher with OVA challenge than for controls (p < 0.05). PDCD5 level was correlated with number of inflammatory cells in BALF and lung function. Moreover, active caspase-3 level was increased in the OVA-challenged mice (p < 0.001) and correlated with PDCD5 level (p = 0.000). Conclusions These data demonstrate an association between level of PDCD5 and asthma severity and indicate that PDCD5 may play a role in allergic asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0317-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolin Diao
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Juan Wang
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Hong Zhu
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
6
|
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 2016; 49:1801-1806. [PMID: 27826615 DOI: 10.3892/ijo.2016.3706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
Abstract
PDCD5 (programmed cell death 5) is an apoptosis related gene cloned in 1999 from a human leukemic cell line. PDCD5 protein containing 125 amino acid (aa) residues sharing significant homology to the corresponding proteins of species. Decreased expression of PDCD5 has been found in many human tumors, including breast, gastric cancer, astrocytic glioma, chronic myelogenous leukemia and hepatocellular carcinoma. In recent years, increased number of studies have shown the functions and mechanisms of PDCD5 protein in cancer cells, such as paraptosis, cell cycle and immunoregulation. In the present review, we provide a comprehensive review on the role of PDCD5 in cancer tissues and cells. This review summarizes the recent studies of the roles of PDCD5 in inflammation and cancer. We mainly focus on discoveries related to molecular mechanisms of PDCD5 protein. We also discuss some discrepancies between the current studies. Overall, the current available data will open new perspectives for a better understanding of PDCD5 in cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
7
|
Falcone Ferreyra ML, Casadevall R, D'Andrea L, AbdElgawad H, Beemster GTS, Casati P. AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:2444-60. [PMID: 26884483 PMCID: PMC4825121 DOI: 10.1104/pp.16.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/14/2016] [Indexed: 05/07/2023]
Abstract
DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs.
Collapse
Affiliation(s)
- María Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (M.L.F.F., R.C., L.D., P.C.);Department of Biology, University of Antwerp, Antwerp, 2000 Belgium (H.A., G.T.S.B.); andDepartment of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511 Egypt (H.A.)
| | - Romina Casadevall
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (M.L.F.F., R.C., L.D., P.C.);Department of Biology, University of Antwerp, Antwerp, 2000 Belgium (H.A., G.T.S.B.); andDepartment of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511 Egypt (H.A.)
| | - Lucio D'Andrea
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (M.L.F.F., R.C., L.D., P.C.);Department of Biology, University of Antwerp, Antwerp, 2000 Belgium (H.A., G.T.S.B.); andDepartment of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511 Egypt (H.A.)
| | - Hamada AbdElgawad
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (M.L.F.F., R.C., L.D., P.C.);Department of Biology, University of Antwerp, Antwerp, 2000 Belgium (H.A., G.T.S.B.); andDepartment of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511 Egypt (H.A.)
| | - Gerrit T S Beemster
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (M.L.F.F., R.C., L.D., P.C.);Department of Biology, University of Antwerp, Antwerp, 2000 Belgium (H.A., G.T.S.B.); andDepartment of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511 Egypt (H.A.)
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (M.L.F.F., R.C., L.D., P.C.);Department of Biology, University of Antwerp, Antwerp, 2000 Belgium (H.A., G.T.S.B.); andDepartment of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511 Egypt (H.A.)
| |
Collapse
|
8
|
Zhuge C, Sun X, Chen Y, Lei J. PDCD5 functions as a regulator of p53 dynamics in the DNA damage response. J Theor Biol 2016; 388:1-10. [DOI: 10.1016/j.jtbi.2015.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
|
9
|
Bi Y, Yang Z, Zhuge C, Lei J. Bifurcation analysis and potential landscapes of the p53-Mdm2 module regulated by the co-activator programmed cell death 5. CHAOS (WOODBURY, N.Y.) 2015; 25:113103. [PMID: 26627563 DOI: 10.1063/1.4934967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dynamics of p53 play important roles in the regulation of cell fate decisions in response to various stresses, and programmed cell death 5 (PDCD5) functions as a co-activator of p53 that modulates p53 dynamics. In the present paper, we investigated how p53 dynamics are modulated by PDCD5 during the deoxyribose nucleic acid damage response using methods of bifurcation analysis and potential landscape. Our results revealed that p53 activities display rich dynamics under different PDCD5 levels, including monostability, bistability with two stable steady states, oscillations, and the coexistence of a stable steady state (or two states) and an oscillatory state. The physical properties of the p53 oscillations were further demonstrated by the potential landscape in which the potential force attracts the system state to the limit cycle attractor, and the curl flux force drives coherent oscillation along the cyclic trajectory. We also investigated the efficiency with which PDCD5 induced p53 oscillations. We show that Hopf bifurcation can be induced by increasing the PDCD5 efficiency and that the system dynamics exhibited clear transition features in both barrier height and energy dissipation when the efficiency was close to the bifurcation point.
Collapse
Affiliation(s)
- Yuanhong Bi
- School of Mathematics and Systems Science and LMIB, Beihang University, Beijing 100191, China and School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
| | - Zhuoqin Yang
- School of Mathematics and Systems Science and LMIB, Beihang University, Beijing 100191, China
| | - Changjing Zhuge
- College of Sciences, Beijing Forestry University, Beijing 100083, China
| | - Jinzhi Lei
- MOE Key Laboratory of Bioinformatics, Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation 2015; 12:117. [PMID: 26068104 PMCID: PMC4474568 DOI: 10.1186/s12974-015-0338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background In multiple sclerosis (MS) and its widely used animal model, experimental autoimmune encephalomyelitis (EAE), autoreactive T cells contribute importantly to central nervous system (CNS) tissue damage and disease progression. Promoting apoptosis of autoreactive T cells may help eliminate cells responsible for inflammation and may delay disease progression and decrease the frequency and severity of relapse. Programmed cell death 5 (PDCD5) is a protein known to accelerate apoptosis in response to various stimuli. However, the effects of recombinant human PDCD5 (rhPDCD5) on encephalitogenic T cell-mediated inflammation remain unknown. Methods We examined the effects of intraperitoneal injection of rhPDCD5 (10 mg/kg) on EAE both prophylactically (started on day 0 post-EAE induction) and therapeutically (started on the onset of EAE disease at day 8), with both of the treatment paradigms being given every other day until day 25. Repeated measures two-way analysis of variance was used for statistical analysis. Results We showed that the anti-inflammatory effects of rhPDCD5 were due to a decrease in Th1/Th17 cell frequency, accompanied by a reduction of proinflammatory cytokines, including IFN-γ and IL-17A, and were observed in both prophylactic and therapeutic regimens of rhPDCD5 treatment in EAE mice. Moreover, rhPDCD5-induced apoptosis of myelin-reactive CD4+ T cells, along with the upregulation of Bax and downregulation of Bcl-2, and with activated caspase 3. Conclusions Our data demonstrate that rhPDCD5 ameliorates the autoimmune CNS disease by inhibiting Th1/Th17 differentiation and inducing apoptosis of predominantly pathogenic T cells. This study provides a novel mechanism to explain the effects of rhPDCD5 on neural inflammation. The work represents a translational demonstration that rhPDCD5 has prophylactic and therapeutic properties in a model of multiple sclerosis.
Collapse
Affiliation(s)
- Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Wenwei Liu
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China.
| | - Wenbin Deng
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
11
|
Bock FJ, Tanzer MC, Haschka MD, Krumschnabel G, Sohm B, Goetsch K, Kofler R, Villunger A. The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death. Sci Rep 2015; 5:11268. [PMID: 26062895 PMCID: PMC4462756 DOI: 10.1038/srep11268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/21/2015] [Indexed: 01/16/2023] Open
Abstract
The tumour suppressor p53 is an important mediator of cell cycle arrest and apoptosis in response to DNA damage, acting mainly by transcriptional regulation of specific target genes. The exact details how p53 modulates this decision on a molecular basis is still incompletely understood. One mechanism of regulation is acetylation of p53 on lysine K120 by the histone-acetyltransferase Tip60, resulting in preferential transcription of proapoptotic target genes. PDCD5, a protein with reported pro-apoptotic function, has recently been identified as regulator of Tip60-dependent p53-acetylation. In an effort to clarify the role of PDCD5 upon DNA damage, we generated cell lines in which PDCD5 expression was conditionally ablated by shRNAs and investigated their response to genotoxic stress. Surprisingly, we failed to note a rate-limiting role of PDCD5 in the DNA damage response. PDCD5 was dispensable for DNA damage induced apoptosis and cell cycle arrest and we observed no significant changes in p53 target gene transcription. While we were able to confirm interaction of PDCD5 with p53, we failed to do so for Tip60. Altogether, our results suggest a role of PDCD5 in the regulation of p53 function but unrelated to cell cycle arrest or apoptosis, at least in the cell types investigated.
Collapse
Affiliation(s)
- Florian J Bock
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Maria C Tanzer
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Manuel D Haschka
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Gerhard Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Bénédicte Sohm
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Katrin Goetsch
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Kofler
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
12
|
XU SHINING, SUI GANG, YUAN LEI, ZOU ZHIQIANG. Expression of programmed cell death 5 protein inhibits progression of lung carcinoma in vitro and in vivo via the mitochondrial apoptotic pathway. Mol Med Rep 2014; 10:2059-64. [DOI: 10.3892/mmr.2014.2454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
|
13
|
Xu F, Wu K, Zhao M, Qin Y, Xia M. Expression and clinical significance of the programmed cell death 5 gene and protein in laryngeal squamous cell carcinoma. J Int Med Res 2013; 41:1838-47. [PMID: 24265335 DOI: 10.1177/0300060513498021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To determine the expression of the gene programmed cell death 5 ( PDCD5) and its protein PDCD5 in laryngeal squamous cell carcinoma and to analyse possible correlations with clinicopathological parameters. Methods PDCD5 mRNA expression was assessed using reverse transcription–polymerase chain reaction and expression of PDCD5 protein was studied using Western blot analysis and immunohistochemistry in laryngeal squamous cell carcinoma and morphologically normal para-carcinoma tissue. Results A total of 41 laryngeal squamous cell carcinoma and 29 normal para-carcinoma tissue specimens were examined. Expression of both PDCD5 mRNA and PDCD5 protein was significantly reduced in laryngeal squamous cell carcinoma compared with normal tissue. Expression was correlated with clinical stage and histological grade, but was not associated with age, sex, location of primary tumour or the presence of lymph node metastases. Conclusion The expression of PDCD5 and its protein were shown to be reduced in laryngeal squamous cell carcinoma. The functional importance of PDCD5 as a regulating agent in cell apoptosis suggests that it may play a key role in tumour pathogenesis and development.
Collapse
Affiliation(s)
- Fenglei Xu
- Department of Otorhinolaryngology – Head and Neck Surgery, Jinling Hospital of Nanjing University Medical School, Jiangsu, China
| | - Kai Wu
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Yejun Qin
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Ming Xia
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Shandong, China
| |
Collapse
|
14
|
Xiao J, Liu C, Li G, Peng S, Hu J, Qu L, Lv P, Zhang Y, Ma D, Chen Y. PDCD5 negatively regulates autoimmunity by upregulating FOXP3(+) regulatory T cells and suppressing Th17 and Th1 responses. J Autoimmun 2013; 47:34-44. [PMID: 24012345 DOI: 10.1016/j.jaut.2013.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Maintenance of FOXP3 protein expression is crucial for differentiation and maturation of regulatory T (Treg) cells, which play important roles in immune homeostasis and immune tolerance. We demonstrate here that PDCD5 interacts with FOXP3, increases acetylation of FOXP3 in synergy with Tip60 and enhances the repressive function of FOXP3. In PDCD5 transgenic (PDCD5tg) mice, overexpression of PDCD5 enhanced the level of FOXP3 protein and percentage of CD4(+)CD25(+)FOXP3(+) cells. Naïve CD4(+) T cells from PDCD5tg mice were more sensitive to TGF-β-induced Treg polarization and expansion. These induced Tregs retained normal suppressive function in vitro. Severity of experimentally-induced autoimmune encephalomyelitis (EAE) in PDCD5tg mice was significantly reduced relative to that of wild-type mice. The beneficial effect of PDCD5 likely resulted from increases of Treg cell frequency, accompanied by a reduction of the predominant pathogenic Th17/Th1 response. Activation-induced cell death enhanced by PDCD5 was also linked to this process. This is the first report revealing that PDCD5 activity in T cells suppresses autoimmunity by modulating Tregs. This study suggests that PDCD5 serves as a guardian of immunological functions and that the PDCD5-FOXP3-Treg axis may be a therapeutic target for autoimmunity.
Collapse
Affiliation(s)
- Juan Xiao
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen CH, Jiang Z, Yan JH, Yang L, Wang K, Chen YY, Han JY, Zhang JH, Zhou CM. The involvement of programmed cell death 5 (PDCD5) in the regulation of apoptosis in cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2013; 19:566-76. [PMID: 23638963 DOI: 10.1111/cns.12114] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/25/2013] [Accepted: 03/21/2013] [Indexed: 01/06/2023] Open
Abstract
AIMS Programmed Cell Death 5 (PDCD5) is a protein that accelerates apoptosis in different types of cells in response to various stimuli and is down-regulated in many cancer tissues. We hypothesized in this study that down-regulating PDCD5 can protect the brain from ischemic damage by inhibiting PDCD5-induced apoptotic pathway. METHODS One hundred and sixty male Sprague-Dawley rats were randomly assigned to five groups: Sham surgery (n = 25), MCAO (n = 45), MCAO+rhPDCD5 (RhPDCD5) (n = 30), MCAO+control siRNA (n = 30), and MCAO+PDCD5 siRNA (n = 30). At 24 h following MCAO, immunohistochemistry and Western blot were performed. RESULTS PDCD5 siRNA reduced the infarct volume, improved neurological deficits, improved cerebral blood flow (CBF), and reduced Evans blue extravasation. Meanwhile, over-expression of PDCD5 protein with recombinant human PDCD5 (rhPDCD5) had an opposite effect. Immunohistochemistry and Western blot demonstrated PDCD5 siRNA decreased the expressions of key proapoptotic proteins such as p53, Bax/Bcl-2, and cleaved caspase-3 in the penumbra areas, whereas rhPDCD5 increased cell apoptosis. Double fluorescence labeling showed the positive immunoreactive materials of PDCD5 were partly colocalized with MAP2, GFAP, CD34, p53, and caspase-3 in the penumbra areas in brain. CONCLUSIONS PDCD5-induced apoptosis and over-expression of PDCD5 are harmful to the ischemic neurons in vivo. Meanwhile, the inhibition of PDCD5 may be protective via reducing the apoptotic-related protein such as p53, Bax, and caspase-3. This observation may have potential for the treatment of ischemic cerebral stroke.
Collapse
Affiliation(s)
- Chun-Hua Chen
- Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li YH, Shi QS, Du J, Jin LF, Du LF, Liu PF, Duan YR. Targeted delivery of biodegradable nanoparticles with ultrasound-targeted microbubble destruction-mediated hVEGF-siRNA transfection in human PC-3 cells in vitro. Int J Mol Med 2012; 31:163-71. [PMID: 23138749 DOI: 10.3892/ijmm.2012.1175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/15/2012] [Indexed: 11/06/2022] Open
Abstract
A potentially viable approach for treating late-stage prostate cancer is gene therapy. Successful gene therapy requires safe and efficient delivery systems. In this study, we report the efficient delivery of small interfering RNA (siRNA) via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. On the basis of previous findings, cyclic Arg-Gly-Asp (cRGD) peptides were conjugated to NPs to recognize the target site, integrin αvβ3, expressed in high levels in PC-3 prostate cancer cells. The suppression of angiogenesis by the downregulation of vascular endothelial growth factor (VEGF) expression has been widely used to inhibit the growth of malignant tumors. In our study, human VEGF (hVEGF)-siRNA was encapsulated in NPs to inhibit VEGF expression in PC-3 cells. Concurrently, sonoporation induced by ultrasound-targeted microbubble destruction (UTMD) was utilized for the delivery of siRNA-loaded NPs. Our results showed low cytotoxicity and high gene transfection efficiency, demonstrating that the targeted delivery of biodegradable NPs with UTMD may be potentially applied as new vector system for gene delivery.
Collapse
Affiliation(s)
- Yun-Hua Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | | | | | | | | | | | | |
Collapse
|