1
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Petty HR. Enzyme Trafficking and Co-Clustering Precede and Accurately Predict Human Breast Cancer Recurrences: An Interdisciplinary Review. Am J Physiol Cell Physiol 2022; 322:C991-C1010. [PMID: 35385324 DOI: 10.1152/ajpcell.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although great effort has been expended to understand cancer's origins, less attention has been given to the primary cause of cancer deaths - cancer recurrences and their sequelae. This interdisciplinary review addresses mechanistic features of aggressive cancer by studying metabolic enzyme patterns within ductal carcinoma in situ (DCIS) of the breast lesions. DCIS lesions from patients who did or did not experience a breast cancer recurrence were compared. Several proteins, including phospho-Ser226-glucose transporter type 1, phosphofructokinase type L and phosphofructokinase/fructose 2,6-bisphosphatase type 4 are found in nucleoli of ductal epithelial cells in samples from patients who will not subsequently recur, but traffic to the cell periphery in samples from patients who will experience a cancer recurrence. Large co-clusters of enzymes near plasmalemmata will enhance product formation because enzyme concentrations in clusters are very high while solvent molecules and solutes diffuse through small channels. These structural changes will accelerate aerobic glycolysis. Agglomerations of pentose phosphate pathway and glutathione synthesis enzymes enhance GSH formation. As aggressive cancer lesions are incomplete at early stages, they may be unrecognizable. We have found that machine learning provides superior analyses of tissue images and may be used to identify biomarker patterns associated with recurrent and non-recurrent patients with high accuracy. This suggests a new prognostic test to predict DCIS patients who are likely to recur and those who are at low risk for recurrence. Mechanistic interpretations provide a deeper understanding of anti-cancer drug action and suggest that aggressive metastatic cancer cells are sensitive to reductive chemotherapy.
Collapse
Affiliation(s)
- Howard R Petty
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Kondrat S, von Lieres E. Mechanisms and Effects of Substrate Channelling in Enzymatic Cascades. Methods Mol Biol 2022; 2487:27-50. [PMID: 35687228 DOI: 10.1007/978-1-0716-2269-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Substrate or metabolite channelling is a transfer of intermediates produced by one enzyme to the sequential enzyme of a reaction cascade or metabolic pathway, without releasing them entirely into bulk. Despite an enormous effort and more than three decades of research, substrate channelling remains the subject of continuing debates and active investigation. Herein, we review the benefits and mechanisms of substrate channelling in vivo and in vitro. We discuss critically the effects that substrate channelling can have on enzymatic cascades, including speeding up or slowing down reaction cascades and protecting intermediates from sequestration and enzymes' surroundings from toxic or otherwise detrimental intermediates. We also discuss how macromolecular crowding affects substrate channelling and point out the galore of open questions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany.
- IV. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany.
| | - Eric von Lieres
- Forschungszentrum Jülich, IBG-1: Biotechnology, Jülich, Germany
| |
Collapse
|
4
|
Kuzmak A, Carmali S, von Lieres E, Russell AJ, Kondrat S. Can enzyme proximity accelerate cascade reactions? Sci Rep 2019; 9:455. [PMID: 30679600 PMCID: PMC6345930 DOI: 10.1038/s41598-018-37034-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
The last decade has seen an exponential expansion of interest in conjugating multiple enzymes of cascades in close proximity to each other, with the overarching goal being to accelerate the overall reaction rate. However, some evidence has emerged that there is no effect of proximity channeling on the reaction velocity of the popular GOx-HRP cascade, particularly in the presence of a competing enzyme (catalase). Herein, we rationalize these experimental results quantitatively. We show that, in general, proximity channeling can enhance reaction velocity in the presence of competing enzymes, but in steady state a significant enhancement can only be achieved for diffusion-limited reactions or at high concentrations of competing enzymes. We provide simple equations to estimate the effect of channeling quantitatively and demonstrate that proximity can have a more pronounced effect under crowding conditions in vivo, particularly that crowding can enhance the overall rates of channeled cascade reactions.
Collapse
Affiliation(s)
- Andrij Kuzmak
- Department for Theoretical Physics, I. Franko National University of Lviv, Lviv, Ukraine
| | - Sheiliza Carmali
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Eric von Lieres
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Alan J Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.,Department of Chemical Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Svyatoslav Kondrat
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany. .,Department of Complex Systems, Institute of Physical Chemistry, Warsaw, Poland.
| |
Collapse
|
5
|
The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nat Chem Biol 2018; 14:1127-1132. [PMID: 30374166 DOI: 10.1038/s41589-018-0153-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022]
Abstract
Cells must cope with toxic or reactive intermediates formed during metabolism. One coping strategy is to sequester reactions that produce such intermediates within specialized compartments or tunnels connecting different active sites. Here, we show that propionyl-CoA synthase (PCS), an ∼ 400-kDa homodimer, three-domain fusion protein and the key enzyme of the 3-hydroxypropionate bi-cycle for CO2 fixation, sequesters its reactive intermediate acrylyl-CoA. Structural analysis showed that PCS forms a multicatalytic reaction chamber. Kinetic analysis suggested that access to the reaction chamber and catalysis are synchronized by interdomain communication. The reaction chamber of PCS features three active sites and has a volume of only 33 nm3. As one of the smallest multireaction chambers described in biology, PCS may inspire the engineering of a new class of dynamically regulated nanoreactors.
Collapse
|
6
|
Hagel JM, Facchini PJ. Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4029-4043. [PMID: 28521055 DOI: 10.1093/jxb/erx152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene fusions have recently attracted attention especially in the field of plant specialized metabolism. The occurrence of a gene fusion, in which originally separate gene products are combined into a single polypeptide, often corresponds to the functional association of individual components within a single metabolic pathway. Examples include gene fusions implicated in benzylisoquinoline alkaloid (BIA), terpenoid, and amino acid biosynthetic pathways, in which distinct domains within a fusion catalyze consecutive, yet independent reactions. Both genomic and transcriptional mechanisms result in the fusion of gene products, which can include partial or complete domain repeats and extensive domain shuffling as evident in the BIA biosynthetic enzyme norcoclaurine synthase. Artificial gene fusions are commonly deployed in attempts to engineer new or improved pathways in plants or microorganisms, based on the premise that fusions are advantageous. However, a survey of functionally characterized fusions in microbial systems shows that the functional impact of fused gene products is not straightforward. For example, whereas enzyme fusions might facilitate the metabolic channeling of unstable intermediates, this channeling can also occur between tightly associated independent enzymes. The frequent occurrence of both fused and unfused enzymes in plant and microbial metabolism adds additional complexity, in terms of both pathway functionality and evolution.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| |
Collapse
|
7
|
Poshyvailo L, von Lieres E, Kondrat S. Does metabolite channeling accelerate enzyme-catalyzed cascade reactions? PLoS One 2017; 12:e0172673. [PMID: 28234973 PMCID: PMC5325314 DOI: 10.1371/journal.pone.0172673] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Metabolite or substrate channeling is a direct transfer of metabolites from one enzyme to the next enzyme in a cascade. Among many potential advantages of substrate channeling, acceleration of the total reaction rate is considered as one of the most important and self-evident. However, using a simple model, supported by stochastic simulations, we show that it is not always the case; particularly at long times (i.e. in steady state) and high substrate concentrations, a channeled reaction cannot be faster, and can even be slower, than the original non-channeled cascade reaction. In addition we show that increasing the degree of channeling may lead to an increase of the metabolite pool size. We substantiate that the main advantage of channeling likely lies in protecting metabolites from degradation or competing side reactions.
Collapse
Affiliation(s)
- Liubov Poshyvailo
- Forschungszentrum Jülich, IBG-1: Biotechnology, Jülich, Germany
- Forschungszentrum Jülich, IEK-7: Institute of Energy and Climate Research, Jülich, Germany
| | - Eric von Lieres
- Forschungszentrum Jülich, IBG-1: Biotechnology, Jülich, Germany
| | - Svyatoslav Kondrat
- Forschungszentrum Jülich, IBG-1: Biotechnology, Jülich, Germany
- * E-mail: ,
| |
Collapse
|
8
|
Smith NE, Vrielink A, Attwood PV, Corry B. Binding and channeling of alternative substrates in the enzyme DmpFG: a molecular dynamics study. Biophys J 2014; 106:1681-90. [PMID: 24739167 DOI: 10.1016/j.bpj.2014.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/13/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022] Open
Abstract
DmpFG is a bifunctional enzyme comprised of an aldolase subunit, DmpG, and a dehydrogenase subunit, DmpF. The aldehyde intermediate produced by the aldolase is channeled directly through a buried molecular channel in the protein structure from the aldolase to the dehydrogenase active site. In this study, we have investigated the binding of a series of progressively larger substrates to the aldolase, DmpG, using molecular dynamics. All substrates investigated are easily accommodated within the active site, binding with free energy values comparable to the physiological substrate 4-hydroxy-2-ketovalerate. Subsequently, umbrella sampling was utilized to obtain free energy surfaces for the aldehyde intermediates (which would be generated from the aldolase reaction on each of these substrates) to move through the channel to the dehydrogenase DmpF. Small substrates were channeled with limited barriers in an energetically feasible process. We show that the barriers preventing bulky intermediates such as benzaldehyde from moving through the wild-type protein can be removed by selective mutation of channel-lining residues, demonstrating the potential for tailoring this enzyme to allow its use for the synthesis of specific chemical products. Furthermore, positions of transient escape routes in this flexible channel were determined.
Collapse
Affiliation(s)
- Natalie E Smith
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia
| | - Paul V Attwood
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
9
|
Zheng S, Pfaendtner J. Enhanced sampling of chemical and biochemical reactions with metadynamics. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.923574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Moxley MA, Sanyal N, Krishnan N, Tanner JJ, Becker DF. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA). J Biol Chem 2013; 289:3639-51. [PMID: 24352662 DOI: 10.1074/jbc.m113.523704] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to Δ(1)-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-γ-semialdehyde (the hydrolyzed form of Δ(1)-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD(+)-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed.
Collapse
Affiliation(s)
- Michael A Moxley
- From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | | | | | | | | |
Collapse
|
11
|
Smith NE, Tie WJ, Flematti GR, Stubbs KA, Corry B, Attwood PV, Vrielink A. Mechanism of the dehydrogenase reaction of DmpFG and analysis of inter-subunit channeling efficiency and thermodynamic parameters in the overall reaction. Int J Biochem Cell Biol 2013; 45:1878-85. [PMID: 23742989 DOI: 10.1016/j.biocel.2013.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 11/30/2022]
Abstract
The bifunctional, microbial enzyme DmpFG is comprised of two subunits: the aldolase, DmpG, and the dehydrogenase, DmpF. DmpFG is of interest due to its ability to channel substrates between the two spatially distinct active sites. While the aldolase is well studied, significantly less is known about the dehydrogenase. Steady-state kinetic measurements of the reverse reaction of DmpF confirmed that the dehydrogenase uses a ping-pong mechanism, with substrate inhibition by acetyl CoA indicating that NAD(+)/NADH and CoA/acetyl CoA bind to the same site in DmpF. The Km of DmpF for exogenous acetaldehyde as a substrate was 23.7 mM, demonstrating the necessity for the channel to deliver acetaldehyde directly from the aldolase to the dehydrogenase active site. A channeling assay on the bifunctional enzyme gave an efficiency of 93% indicating that less than 10% of the toxic acetaldehyde leaks out of the channel into the bulk media, prior to reaching the dehydrogenase active site. The thermodynamic activation parameters of the reactions catalyzed by the aldolase, the dehydrogenase and the DmpFG complex were determined. The Gibb's free energy of activation for the dehydrogenase reaction was lower than that obtained for the full DmpFG reaction, in agreement with the high kcat obtained for the dehydrogenase reaction in isolation. Furthermore, although both the DmpF and DmpG reactions occur with small, favorable entropies of activation, the full DmpFG reaction occurs with a negative entropy of activation. This supports the concept of allosteric structural communication between the two enzymes to coordinate their activities.
Collapse
Affiliation(s)
- Natalie E Smith
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Fischer B, Boutserin S, Mazon H, Collin S, Branlant G, Gruez A, Talfournier F. Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: evidence for several active oligomeric states and coenzyme A activation upon binding. Chem Biol Interact 2012; 202:70-7. [PMID: 23237860 DOI: 10.1016/j.cbi.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Until the last decade, two unrelated aldehyde dehydrogenase (ALDH) superfamilies, i.e. the phosphorylating and non-phosphorylating superfamilies, were known to catalyze the oxidation of aldehydes to activated or non-activated acids. However, a third one was discovered by the crystal structure of a bifunctional enzyme 4-hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase (DmpFG) from Pseudomonas sp. strain CF600 (Manjasetty et al., Proc. Natl. Acad. Sci. USA 100 (2003) 6992-6997). Indeed, DmpF exhibits a non-phosphorylating CoA-dependent ALDH activity, but is structurally related to the phosphorylating superfamily. In this study, we undertook the characterization of the catalytic and structural properties of MhpEF from Escherichia coli, an ortholog of DmpFG in which MhpF converts acetaldehyde, produced by the cleavage of 4-hydroxy-2-ketovalerate by MhpE, into acetyl-CoA. The kinetic data obtained under steady-state and pre-steady-state conditions show that the aldehyde dehydrogenase, MhpF, is active as a monomer, a unique feature relative to the phosphorylating and non-phosphorylating ALDH superfamilies. Our results also reveal that the catalytic properties of MhpF are not dependent on its oligomeric state, supporting the hypothesis of a structurally and catalytically independent entity. Moreover, the transthioesterification is shown to be rate-limiting and, when compared with a chemical model, its catalytic efficiency is increased 10(4)-fold. Therefore, CoA binding to MhpF increases its reactivity and optimizes its positioning relative to the thioacylenzyme intermediate, thus enabling the formation of an efficient deacylation complex.
Collapse
Affiliation(s)
- Baptiste Fischer
- Unité Mixte de Recherche CNRS-Université de Lorraine 7214 AREMS, ARN-RNP Structure-Fonction-Maturation, Enzymologie Moléculaire et Structurale, Faculté de médecine, Biopôle, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Baker P, Carere J, Seah SYK. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI. Biochemistry 2012; 51:4558-67. [PMID: 22574886 DOI: 10.1021/bi300407y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling.
Collapse
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|