1
|
Mandal T, Brandt N, Tempra C, Javanainen M, Fábián B, Chiantia S. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184388. [PMID: 39401729 DOI: 10.1016/j.bbamem.2024.184388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets - often referred to as interleaflet coupling - play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Titas Mandal
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Nadine Brandt
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Unit of Physics, Tampere University, 33720 Tampere, Finland
| | - Balázs Fábián
- Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-Street 3, 60438 Frankfurt am Main, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Davidović D, Kukulka M, Sarmento MJ, Mikhalyov I, Gretskaya N, Chmelová B, Ricardo JC, Hof M, Cwiklik L, Šachl R. Which Moiety Drives Gangliosides to Form Nanodomains? J Phys Chem Lett 2023:5791-5797. [PMID: 37327454 DOI: 10.1021/acs.jpclett.3c00761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.
Collapse
Affiliation(s)
- David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Mercedes Kukulka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Natalia Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Barbora Chmelová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu, 2027/3, 121 16 Prague, Czech Republic
| | - Joana C Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| |
Collapse
|
3
|
Tantirimudalige SN, Raghuvamsi PV, Sharma KK, Wei Bao JC, Anand GS, Wohland T. The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection. J Biol Chem 2022; 298:102570. [PMID: 36209827 PMCID: PMC9650044 DOI: 10.1016/j.jbc.2022.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.
Collapse
Affiliation(s)
- Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Palur Venkata Raghuvamsi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Bioinformatics Institute (A∗STAR), Singapore, Singapore
| | - Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jonathan Chua Wei Bao
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Pham T, Cheng KH. Exploring the binding kinetics and behaviors of self-aggregated beta-amyloid oligomers to phase-separated lipid rafts with or without ganglioside-clusters. Biophys Chem 2022; 290:106874. [PMID: 36067650 DOI: 10.1016/j.bpc.2022.106874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
Lipid binding kinetics and energetics of self-aggregated and disordered beta-amyloid oligomers of various sizes, from solution to lipid raft surfaces, were investigated using MD simulations. Our systems include small (monomers to tetramers) and larger (octamers and dodecamers) oligomers. Our lipid rafts contain saturated and unsaturated phosphatidylcholine (PC), cholesterol, and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited dynamic and structurally diversified domains including liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lod domains. For rafts without GM1, all oligomers bound to the Lod domain. For GM1-containing rafts, all small oligomers and most larger oligomers bound specifically to the GM1-clusters embedded in the Lo domain. Lipid-protein binding energies followed an order of GM1 >> unsaturated PC > saturated PC > cholesterol for all rafts. In addition, protein-induced membrane structural disruption increased progressively with the size of the oligomer for the annular lipids surrounding the membrane-bound protein in non-GM1-containing rafts. We propose that the tight binding of beta-amyloid oligomers to the GM1-clusters and the structural perturbation of lipids surrounding the membrane-bound proteins at the Lod domain are early molecular events of the beta-amyloid aggregation process on neuronal membrane surfaces that trigger the onset of Alzheimer's.
Collapse
Affiliation(s)
- Thuong Pham
- Department of Physics, Trinity University, United States of America
| | - Kwan H Cheng
- Department of Physics, Trinity University, United States of America; Department of Neuroscience, Trinity University, United States of America.
| |
Collapse
|
5
|
Matsubara T, IIjima K, Kojima T, Hirai M, Miyamoto E, Sato T. Heterogeneous Ganglioside-Enriched Nanoclusters with Different Densities in Membrane Rafts Detected by a Peptidyl Molecular Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:646-654. [PMID: 33398996 DOI: 10.1021/acs.langmuir.0c02387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The specific features of the lateral distribution of gangliosides play key roles in cell-cell communications and the onset of various diseases related to the plasma membrane. We herein demonstrated that an artificial peptide identified from a phage-displayed library is available as a molecular probe for specific ganglioside nanoclustering sites in caveolae/membrane rafts on the cell surface. Atomic force microscopy studies indicated that the peptide specifically binds to the highly enriched monosialoganglioside GM1 nanodomains of reconstituted lipid bilayers composed of GM1, sphingomyelin, cholesterol, and unsaturated phospholipids. The ganglioside-containing area recognized by the peptide on the surface of PC12 cells was part of the area recognized by the cholera toxin B subunit, which has high affinity for GM1. Furthermore, the peptide bound to the cell surface after a treatment with methyl-β-cyclodextrin (MβCD), which disrupts membrane rafts by removing cholesterol. The present results indicate that there are heterogeneous ganglioside clusters with different ganglioside densities in caveolae/membrane rafts, and the peptidyl probe selectively recognizes the high-density ganglioside nanodomain that resists the MβCD treatment. This peptidyl probe will be useful for obtaining information on the lipid organization of the cell membrane and will help clarify the mechanisms by which the lateral distribution of gangliosides affects biological functions and the onset of diseases.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Kazutoshi IIjima
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Takahiro Kojima
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Miwa Hirai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Erika Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
6
|
Woodward X, Kelly CV. Single-lipid dynamics in phase-separated supported lipid bilayers. Chem Phys Lipids 2020; 233:104991. [PMID: 33121937 DOI: 10.1016/j.chemphyslip.2020.104991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022]
Abstract
Phase separation is a fundamental organizing mechanism on cellular membranes. Lipid phases have complex dependencies on the membrane composition, curvature, tension, and temperature. Lipid diffusion rates vary by up to ten-fold between liquid-disordered (Ld) and liquid-ordered (Lo) phases depending on the membrane composition, measurement technique, and the surrounding environment. This manuscript reports the lipid diffusion on phase-separated supported lipid bilayers (SLBs) with varying temperature, composition, and lipid phase. Lipid diffusion is measured by single-particle tracking (SPT) and fluorescence correlation spectroscopy (FCS) via custom data acquisition and analysis protocols that apply to diverse membranes systems. Traditionally, SPT is sensitive to diffuser aggregation, whereas the diffusion rates reported by FCS are unaffected by the presence of immobile aggregates. Within this manuscript, we report (1) improved single-particle tracking analysis of lipid diffusion, (2) comparison and consistency between diffusion measurement methods for non-Brownian diffusers, and (3) the application of these methods to measure the phase, temperature, and composition dependencies in lipid diffusion. We demonstrate improved SPT analysis methods that yield consistent FCS and SPT diffusion results even when most fluorescent lipids are frequently confined within aggregates within the membrane. With varying membrane composition and temperature, we demonstrate differences in diffusion between the Ld and Lo phases of SLBs.
Collapse
Affiliation(s)
- Xinxin Woodward
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, United States
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
7
|
Scott HL, Baker JR, Frederick AJ, Kennison KB, Mendes K, Heberle FA. FRET from phase-separated vesicles: An analytical solution for a spherical geometry. Chem Phys Lipids 2020; 233:104982. [PMID: 33065119 DOI: 10.1016/j.chemphyslip.2020.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Förster resonance energy transfer (FRET) is a powerful tool for investigating heterogeneity in lipid bilayers. In model membrane studies, samples are frequently unilamellar vesicles with diameters of 20-200 nm. It is well-known that FRET efficiency is insensitive to vesicle curvature in uniformly mixed lipid bilayers, and consequently theoretical models for FRET typically assume a planar geometry. Here, we use a spherical harmonic expansion of the acceptor surface density to derive an analytical solution for FRET between donor and acceptor molecules distributed on the surface of a sphere. We find excellent agreement between FRET predicted from the model and FRET calculated from corresponding Monte Carlo simulations, thus validating the model. An extension of the model to the case of a non-uniform acceptor surface density (i.e., a phase-separated vesicle) reveals that FRET efficiency depends on vesicle size when acceptors partition between the coexisting phases, and approaches the efficiency of a uniformly mixed bilayer as the vesicle size decreases. We show that this is an indirect effect of constrained domain size, rather than an intrinsic effect of vesicle curvature. Surprisingly, the theoretical predictions were not borne out in experiments: we did not observe a statistically significant change in FRET efficiency in phase-separated vesicles as a function of vesicle size. We discuss factors that likely mask the vesicle size effect in extruded samples.
Collapse
Affiliation(s)
- Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37920, United States; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - James R Baker
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Aaron J Frederick
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Kristen B Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Kevin Mendes
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
8
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
9
|
Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc Natl Acad Sci U S A 2020; 117:14978-14986. [PMID: 32554490 DOI: 10.1073/pnas.2001119117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AB5 bacterial toxins and polyomaviruses induce membrane curvature as a mechanism to facilitate their entry into host cells. How membrane bending is accomplished is not yet fully understood but has been linked to the simultaneous binding of the pentameric B subunit to multiple copies of glycosphingolipid receptors. Here, we probe the toxin membrane binding and internalization mechanisms by using a combination of superresolution and polarized localization microscopy. We show that cholera toxin subunit B (CTxB) can induce membrane curvature only when bound to multiple copies of its glycosphingolipid receptor, GM1, and the ceramide structure of GM1 is likely not a determinant of this activity as assessed in model membranes. A mutant CTxB capable of binding only a single GM1 fails to generate curvature either in model membranes or in cells, and clustering the mutant CTxB-single-GM1 complexes by antibody cross-linking does not rescue the membrane curvature phenotype. We conclude that both the multiplicity and specific geometry of GM1 binding sites are necessary for the induction of membrane curvature. We expect this to be a general rule of membrane behavior for all AB5 toxins and polyomaviruses that bind glycosphingolipids to invade host cells.
Collapse
|
10
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
11
|
Škerle J, Humpolíčková J, Johnson N, Rampírová P, Poláchová E, Fliegl M, Dohnálek J, Suchánková A, Jakubec D, Strisovsky K. Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. Biophys J 2020; 118:1861-1875. [PMID: 32246901 DOI: 10.1016/j.bpj.2020.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/06/2020] [Accepted: 03/13/2020] [Indexed: 11/19/2022] Open
Abstract
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.
Collapse
Affiliation(s)
- Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.
| | - Nicholas Johnson
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Edita Poláchová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Fliegl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Anna Suchánková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - David Jakubec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
12
|
Olšinová M, Jurkiewicz P, Kishko I, Sýkora J, Sabó J, Hof M, Cwiklik L, Cebecauer M. Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics. iScience 2018; 10:87-97. [PMID: 30508721 PMCID: PMC6277224 DOI: 10.1016/j.isci.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 01/23/2023] Open
Abstract
The dynamics of cellular membranes is primarily determined by lipid species forming a bilayer. Proteins are considered mainly as effector molecules of diverse cellular processes. In addition to large assemblies of proteins, which were found to influence properties of fluid membranes, biological membranes are densely populated by small, highly mobile proteins. However, little is known about the effect of such proteins on the dynamics of membranes. Using synthetic peptides, we demonstrate that transmembrane helices interfere with the mobility of membrane components by trapping lipid acyl chains on their rough surfaces. The effect is more pronounced in the presence of cholesterol, which segregates from the rough surface of helical peptides. This may contribute to the formation or stabilization of membrane heterogeneities. Since roughness is a general property of helical transmembrane segments, our results suggest that, independent of their size or cytoskeleton linkage, integral membrane proteins affect local membrane dynamics and organization.
Collapse
Affiliation(s)
- Marie Olšinová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Piotr Jurkiewicz
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Iryna Kishko
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Jan Sýkora
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Ján Sabó
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Lukasz Cwiklik
- Department of Theoretical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| |
Collapse
|
13
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
14
|
Ng J, Kamm RD, Wohland T, Kraut RS. Evidence from ITIR-FCS Diffusion Studies that the Amyloid-Beta (Aβ) Peptide Does Not Perturb Plasma Membrane Fluidity in Neuronal Cells. J Mol Biol 2018; 430:3439-3453. [PMID: 29746852 DOI: 10.1016/j.jmb.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
The amyloid-beta (Aβ) peptide, commonly found in elevated levels in the brains of patients with Alzheimer's disease (AD) and in the cerebrospinal fluid of individuals presenting mild cognitive impairment, is thought to be one of the major factors resulting in the onset of AD. Although observed and studied at the molecular level for several decades, the exact disease pathology of AD is still not totally clear. One way in which Aβ is thought to affect neurons is by influencing cell membrane fluidity, which could result in abnormal synaptic or signaling function. The effects of Aβ on the fluidity of biological membranes have been studied using numerous membrane models such as artificial lipid bilayers and vesicles, living cells and membranes extracted from animal models of AD, yet there is still no consensus as to what effects Aβ has, if any, on membrane fluidity. As one of the most precise and accurate means of assaying membrane dynamics, we have thus chosen fluorescence correlation spectroscopy to investigate the issue, using fluorescent membrane-targeted probes on living cells treated with Aβ(1-42) oligomers and observing possible changes in membrane diffusion. Effects of Aβ on viability in different cell types varied from no detectable effect to extensive cell death by 72 h post-exposure. However, there was no change in the fluidity of either ordered membrane domains or the bulk membrane in any of these cells within this period. Our conclusion from these results is that perturbation of membrane fluidity is not likely to be a factor in acute Aβ-induced cytotoxicity.
Collapse
Affiliation(s)
- Justin Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore; Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore
| | - Thorsten Wohland
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore; Department of Biological Sciences and Chemistry, National University of Singapore, 14 Science Drive 4, S117543, Singapore
| | - Rachel S Kraut
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore; Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore.
| |
Collapse
|
15
|
Suzuki KGN, Ando H, Komura N, Fujiwara T, Kiso M, Kusumi A. Unraveling of Lipid Raft Organization in Cell Plasma Membranes by Single-Molecule Imaging of Ganglioside Probes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:41-58. [DOI: 10.1007/978-981-13-2158-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Kabbani AM, Kelly CV. Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy. Biophys J 2017; 113:1795-1806. [PMID: 29045873 DOI: 10.1016/j.bpj.2017.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 11/17/2022] Open
Abstract
For endocytosis and exocytosis, membranes transition among planar, budding, and vesicular topographies through nanoscale reorganization of lipids, proteins, and carbohydrates. However, prior attempts to understand the initial stages of nanoscale bending have been limited by experimental resolution. Through the implementation of polarized localization microscopy, this article reports the inherent membrane bending capability of cholera toxin subunit B (CTxB) in quasi-one-component-supported lipid bilayers. Membrane buds were first detected with <50 nm radius, grew to >200 nm radius, and extended into longer tubules with dependence on the membrane tension and CTxB concentration. Compared to the concentration of the planar-supported lipid bilayers, CTxB was (12 ± 4)× more concentrated on the positive curvature top and (26 ± 11)× more concentrated on the negative Gaussian curvature neck of the nanoscale membrane buds. CTxB is frequently used as a marker for liquid-ordered lipid phases; however, the coupling between CTxB and membrane bending provides an alternate understanding of CTxB-induced membrane reorganization. These findings allow for the reinterpretation of prior observations by correlating CTxB clustering and diffusion to CTxB-induced membrane bending. Single-particle tracking was performed on single lipids and CTxB to reveal the correlations among single-molecule diffusion, CTxB accumulation, and membrane topography. Slowed lipid and CTxB diffusion was observed at the nanoscale bud locations, suggesting a local increase in the effective membrane viscosity or molecular crowding upon membrane bending. These results suggest inherent CTxB-induced membrane bending as a mechanism for initiating CTxB internalization in cells that could be independent of clathrin, caveolin, actin, and lipid phase separation.
Collapse
Affiliation(s)
- Abir M Kabbani
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
17
|
Sarangi NK, Ayappa KG, Basu JK. Complex dynamics at the nanoscale in simple biomembranes. Sci Rep 2017; 7:11173. [PMID: 28894156 PMCID: PMC5593986 DOI: 10.1038/s41598-017-11068-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Nature is known to engineer complex compositional and dynamical platforms in biological membranes. Understanding this complex landscape requires techniques to simultaneously detect membrane re-organization and dynamics at the nanoscale. Using super-resolution stimulated emission depletion (STED) microscopy coupled with fluorescence correlation spectroscopy (FCS), we reveal direct experimental evidence of dynamic heterogeneity at the nanoscale in binary phospholipid-cholesterol bilayers. Domain formation on the length scale of ~200–600 nm due to local cholesterol compositional heterogeneity is found to be more prominent at high cholesterol content giving rise to distinct intra-domain lipid dynamics. STED-FCS reveals unique dynamical crossover phenomena at length scales of ~100–150 nm within each of these macroscopic regions. The extent of dynamic heterogeneity due to intra-domain hindered lipid diffusion as reflected from the crossover length scale, is driven by cholesterol packing and organization, uniquely influenced by phospholipid type. These results on simple binary model bilayer systems provide novel insights into pathways leading to the emergence of complex nanodomain substructures with implications for a wide variety of membrane mediated cellular events.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India
| | - K G Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560 012, India. .,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560 012, India.
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
18
|
Suzuki KGN, Ando H, Komura N, Fujiwara TK, Kiso M, Kusumi A. Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim Biophys Acta Gen Subj 2017; 1861:2494-2506. [PMID: 28734966 DOI: 10.1016/j.bbagen.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40ms and 12ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; The Institute for Stem Cell Biology and Regenerative Medicine (inStem), The National Centre for Biological Sciences (NCBS), Bangalore 650056, India.
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Kiso
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
19
|
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered. Sci Rep 2017; 7:5460. [PMID: 28710349 PMCID: PMC5511215 DOI: 10.1038/s41598-017-05539-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022] Open
Abstract
It is a fundamental question in cell biology and biophysics whether sphingomyelin (SM)- and cholesterol (Chol)- driven nanodomains exist in living cells and in model membranes. Biophysical studies on model membranes revealed SM and Chol driven micrometer-sized liquid-ordered domains. Although the existence of such microdomains has not been proven for the plasma membrane, such lipid mixtures have been often used as a model system for ‘rafts’. On the other hand, recent super resolution and single molecule results indicate that the plasma membrane might organize into nanocompartments. However, due to the limited resolution of those techniques their unambiguous characterization is still missing. In this work, a novel combination of Förster resonance energy transfer and Monte Carlo simulations (MC-FRET) identifies directly 10 nm large nanodomains in liquid-disordered model membranes composed of lipid mixtures containing SM and Chol. Combining MC-FRET with solid-state wide-line and high resolution magic angle spinning NMR as well as with fluorescence correlation spectroscopy we demonstrate that these nanodomains containing hundreds of lipid molecules are fluid and disordered. In terms of their size, fluidity, order and lifetime these nanodomains may represent a relevant model system for cellular membranes and are closely related to nanocompartments suggested to exist in cellular membranes.
Collapse
|
20
|
Fenz SF, Smith AS, Monzel C. Measuring the Invisible: Determining the Size of Growing Nanodomains Using the "Inverse FCS". Biophys J 2017; 112:2245-2246. [PMID: 28591596 DOI: 10.1016/j.bpj.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Susanne F Fenz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Ana-Sunčana Smith
- PULS Group, Institut für Theoretische Physik and the Excellence Cluster: Engineering of Advanced Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute Ruđer Bošković, Division of Physical Chemistry, Zagreb, Croatia
| | - Cornelia Monzel
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| |
Collapse
|
21
|
Jiang Y, Pryse KM, Melnykov A, Genin GM, Elson EL. Investigation of Nanoscopic Phase Separations in Lipid Membranes Using Inverse FCS. Biophys J 2017; 112:2367-2376. [PMID: 28591609 PMCID: PMC5475253 DOI: 10.1016/j.bpj.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022] Open
Abstract
Measurement of the sizes of nanoscopic particles is a difficult challenge, especially in two-dimensional systems such as cell membranes. We have extended inverse fluorescence correlation spectroscopy (iFCS) to endow it with unique advantages for measuring particle size from the nano- to the microscale. We have augmented iFCS with an analysis of moments of fluorescence fluctuations and used it to measure stages of phase separation in model lipid bilayer membranes. We observed two different pathways for the growth of phase domains. In one, nanoscopic gel domains appeared first and then gradually grew to micrometer size. In the other, the domains reached micrometer size quickly, and their number gradually increased. These measurements demonstrate the value of iFCS measurements through their ability, to our knowledge, to provide new information about the mechanism of lipid phase separation and potentially about the physical basis of naturally occurring nanodomains such as lipid rafts.
Collapse
Affiliation(s)
- Yanfei Jiang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth M Pryse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Artem Melnykov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
22
|
Cebecauer M, Hof M, Amaro M. Impact of GM 1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View. Biophys J 2017; 113:1194-1199. [PMID: 28410623 DOI: 10.1016/j.bpj.2017.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
In this perspective we summarize current knowledge of the effect of monosialoganglioside GM1 on the membrane-mediated aggregation of the β-amyloid (Aβ) peptide. GM1 has been suggested to be actively involved in the development of Alzheimer's disease due to its ability to seed the aggregation of Aβ. However, GM1 is known to be neuroprotective against Aβ-induced toxicity. Here we suggest that the two scenarios are not mutually exclusive but rather complementary, and might depend on the organization of GM1 in membranes. Improving our understanding of the molecular details behind the role of gangliosides in neurodegenerative amyloidoses might help in developing disease-modifying treatments.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| |
Collapse
|
23
|
Dao TPT, Brûlet A, Fernandes F, Er-Rafik M, Ferji K, Schweins R, Chapel JP, Fedorov A, Schmutz M, Prieto M, Sandre O, Le Meins JF. Mixing Block Copolymers with Phospholipids at the Nanoscale: From Hybrid Polymer/Lipid Wormlike Micelles to Vesicles Presenting Lipid Nanodomains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1705-1715. [PMID: 28128560 DOI: 10.1021/acs.langmuir.6b04478] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hybrids, i.e., intimately mixed polymer/phospholipid vesicles, can potentially marry in a single membrane the best characteristics of the two separate components. The ability of amphiphilic copolymers and phospholipids to self-assemble into hybrid membranes has been studied until now on the submicrometer scale using optical microscopy on giant hybrid unilamellar vesicles (GHUVs), but limited information is available on large hybrid unilamellar vesicles (LHUVs). In this work, copolymers based on poly(dimethylsiloxane) and poly(ethylene oxide) with different molar masses and architectures (graft, triblock) were associated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Classical protocols of LUV formation were used to obtain nanosized self-assembled structures. Using small-angle neutron scattering (SANS), time-resolved Förster resonance energy transfer (TR-FRET), and cryo-transmission electron microscopy (cryo-TEM), we show that copolymer architecture and molar mass have direct influences on the formation of hybrid nanostructures that can range from wormlike hybrid micelles to hybrid vesicles presenting small lipid nanodomains.
Collapse
Affiliation(s)
- T P Tuyen Dao
- University of Bordeaux , LCPO UMR 5629, 16 Avenue Pey Berland, F-33600 Pessac, France
- CNRS , Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico , 1049-001 Lisboa, Portugal
| | - A Brûlet
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, CEA Saclay , F-91191 Gif-sur-Yvette Cedex, France
| | - F Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico , 1049-001 Lisboa, Portugal
- Research Unit on Applied Molecular Biosciences-Rede de Química e Tecnologia (UCIBIO-REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica, Portugal
| | - M Er-Rafik
- Institut Charles Sadron, UPR 22 CNRS, Université de Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | - K Ferji
- University of Bordeaux , LCPO UMR 5629, 16 Avenue Pey Berland, F-33600 Pessac, France
- CNRS , Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| | - R Schweins
- ILL Grenoble, DS LSS, CS20156, 71 Avenue Martyrs, F-38042 Grenoble 9, France
| | - J-P Chapel
- Université de Bordeaux, CNRS , Ctr Rech Paul Pascal CRPP, UPR 8641, F-33600 Pessac, France
| | - A Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico , 1049-001 Lisboa, Portugal
| | - M Schmutz
- Institut Charles Sadron, UPR 22 CNRS, Université de Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | - M Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico , 1049-001 Lisboa, Portugal
| | - O Sandre
- University of Bordeaux , LCPO UMR 5629, 16 Avenue Pey Berland, F-33600 Pessac, France
- CNRS , Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| | - J-F Le Meins
- University of Bordeaux , LCPO UMR 5629, 16 Avenue Pey Berland, F-33600 Pessac, France
- CNRS , Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
24
|
Raghunathan K, Wong TH, Chinnapen DJ, Lencer WI, Jobling MG, Kenworthy AK. Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains. Biophys J 2016; 111:2547-2550. [PMID: 27914621 DOI: 10.1016/j.bpj.2016.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tiffany H Wong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Daniel J Chinnapen
- Harvard Medical School and the Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Wayne I Lencer
- Harvard Medical School and the Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Michael G Jobling
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
25
|
Amaro M, Šachl R, Jurkiewicz P, Coutinho A, Prieto M, Hof M. Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state. Biophys J 2016; 107:2751-2760. [PMID: 25517142 DOI: 10.1016/j.bpj.2014.10.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
Collapse
Affiliation(s)
- Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Piotr Jurkiewicz
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Ana Coutinho
- Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Departamento Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Prieto
- Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
26
|
A protocol for the systematic and quantitative measurement of protein-lipid interactions using the liposome-microarray-based assay. Nat Protoc 2016; 11:1021-38. [PMID: 27149326 DOI: 10.1038/nprot.2016.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipids organize the activity of the cell's proteome through a complex network of interactions. The assembly of comprehensive atlases embracing all protein-lipid interactions is an important challenge that requires innovative methods. We recently developed a liposome-microarray-based assay (LiMA) that integrates liposomes, microfluidics and fluorescence microscopy and which is capable of measuring protein recruitment to membranes in a quantitative and high-throughput manner. Compared with previous assays that are labor-intensive and difficult to scale up, LiMA improves the protein-lipid interaction assay throughput by at least three orders of magnitude. Here we provide a step-by-step LiMA protocol that includes the following: (i) the serial and generic production of the liposome microarray; (ii) its integration into a microfluidic format; (iii) the measurement of fluorescently labeled protein (either purified proteins or from cell lysate) recruitment to liposomal membranes using high-throughput microscopy; (iv) automated image analysis pipelines to quantify protein-lipid interactions; and (v) data quality analysis. In addition, we discuss the experimental design, including the relevant quality controls. Overall, the protocol-including device preparation, assay and data analysis-takes 6-8 d. This protocol paves the way for protein-lipid interaction screens to be performed on the proteome and lipidome scales.
Collapse
|
27
|
Abstract
Lipid rafts are putative complexes of lipids and proteins in cellular membranes that are proposed to function in trafficking and signalling events. CTxB (cholera toxin B-subunit) has emerged as one of the most studied examples of a raft-associated protein. Consisting of the membrane-binding domain of cholera toxin, CTxB binds up to five copies of its lipid receptor on the plasma membrane of the host cell. This multivalency of binding gives the toxin the ability to reorganize underlying membrane structure by cross-linking otherwise small and transient lipid rafts. CTxB thus serves as a useful model for understanding the properties and functions of protein-stabilized domains. In the present chapter, we summarize current evidence that CTxB associates with and cross-links lipid rafts, discuss how CTxB binding modulates the architecture and dynamics of membrane domains, and describe the functional consequences of this cross-linking behaviour on toxin uptake into cells via endocytosis.
Collapse
|
28
|
Sun H, Chen L, Gao L, Fang W. Nanodomain Formation of Ganglioside GM1 in Lipid Membrane: Effects of Cholera Toxin-Mediated Cross-Linking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9105-14. [PMID: 26250646 DOI: 10.1021/acs.langmuir.5b01866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cross-linking of specific lipid components by proteins mediates transmembrane signaling and material transport. In this work, we conducted coarse-grained simulation to investigate the interactions of binding units of chorela toxin (CTB) with mixed ganglioside GM1 and dipalmitoylphosphatidylcholine (DPPC) lipid bilayer membrane. We determine that the binding of CTB pentamers cross-links GM1 molecules into protein-sized nanodomains that have distinct lipid order compared with the bulk. The toxin in the nanodomain partially penetrates into the membrane. The local disordering can also transmit across the membrane via lipid coupling. Comparison simulations on CTB binding to a membrane that is composed of various lipid components demonstrate that several factors are responsible for the nanodomain formation: (a) the negatively charged headgroup of a GM1 receptor is responsible for the multivalent binding; (b) the head groups being full of hydrogen-bonding donors and receptors stabilize the GM1 cluster itself and ensure the toxin binding with high affinity; and
Collapse
Affiliation(s)
- Huijiao Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Licui Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
29
|
Huang H, Simsek MF, Jin W, Pralle A. Effect of receptor dimerization on membrane lipid raft structure continuously quantified on single cells by camera based fluorescence correlation spectroscopy. PLoS One 2015; 10:e0121777. [PMID: 25811483 PMCID: PMC4374828 DOI: 10.1371/journal.pone.0121777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane bound cell signaling is modulated by the membrane ultra-structure, which itself may be affected by signaling. However, measuring the interaction of membrane proteins with membrane structures in intact cells in real-time poses considerable challenges. In this paper we present a non-destructive fluorescence method that quantifies these interactions in single cells, and is able to monitor the same cell continuously to observe small changes. This approach combines total internal fluorescence microscopy with fluorescence correlation spectroscopy to measure the protein's diffusion and molecular concentration in different sized areas simultaneously. It correctly differentiates proteins interacting with membrane fences from proteins interacting with cholesterol-stabilized domains, or lipid rafts. This method detects small perturbations of the membrane ultra-structure or of a protein's tendency to dimerize. Through continuous monitoring of single cells, we demonstrate how dimerization of GPI-anchored proteins increases their association with the structural domains. Using a dual-color approach we study the effect of dimerization of one GPI-anchored protein on another type of GPI-anchored protein expressed in the same cell. Scans over the cell surface reveal a correlation between cholesterol stabilized domains and membrane cytoskeleton.
Collapse
Affiliation(s)
- Heng Huang
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
| | - M. Fethullah Simsek
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
| | - Weixiang Jin
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
| | - Arnd Pralle
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
- Department of Biophysics and Physiology, University at Buffalo the State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Dao TPT, Fernandes F, Er-Rafik M, Salva R, Schmutz M, Brûlet A, Prieto M, Sandre O, Le Meins JF. Phase Separation and Nanodomain Formation in Hybrid Polymer/Lipid Vesicles. ACS Macro Lett 2015; 4:182-186. [PMID: 35596428 DOI: 10.1021/mz500748f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid polymer/lipid large unilamellar vesicles (LUVs) were studied by small angle neutron scattering (SANS), time-resolved Förster resonance energy transfer (TR-FRET), and cryo-transmission electron microscopy (cryo-TEM). For the first time in hybrid vesicles, evidence for phase separation at the nanoscale was obtained, leading to the formation of stable nanodomains enriched either in lipid or polymer. This stability was allowed by using vesicle-forming copolymer with a membrane thickness close to the lipid bilayer thickness, thereby minimizing the hydrophobic mismatch at the domain periphery. Hybrid giant unilamellar vesicles (GUVs) with the same composition have been previously shown to be unstable and susceptible to fission, suggesting a role of curvature in the stabilization of nanodomains in these structures.
Collapse
Affiliation(s)
- T. P. Tuyen Dao
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
- Centro
de Química-Física Molecular and Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - F. Fernandes
- Centro
de Química-Física Molecular and Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - M. Er-Rafik
- Institut
Charles Sadron, UPR 22 CNRS, Université de Strasbourg, 23 rue
du Loess, 67034 Strasbourg, France
| | - R. Salva
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
| | - M. Schmutz
- Institut
Charles Sadron, UPR 22 CNRS, Université de Strasbourg, 23 rue
du Loess, 67034 Strasbourg, France
| | - A. Brûlet
- Laboratoire
Léon Brillouin, UMR12 CEA-CNRS, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - M. Prieto
- Centro
de Química-Física Molecular and Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - O. Sandre
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
| | - J.-F. Le Meins
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
| |
Collapse
|
31
|
Šachl R, Amaro M, Aydogan G, Koukalová A, Mikhalyov II, Boldyrev IA, Humpolíčková J, Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:850-7. [PMID: 25101973 DOI: 10.1016/j.bbamcr.2014.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
Gangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed. So far however, merely the isolated issues were addressed and no interplay between them investigated. In this work, several advanced fluorescence techniques such as Z-scan fluorescence correlation spectroscopy, Förster resonance energy transfer combined with Monte Carlo simulations, and a newly developed fluorescence antibunching assay were employed to give a more complex portrait of clustering and cholesterol involvement in multivalent ligand recognition of GM1. Our results indicate that membrane properties have an impact on a fraction of GM1 molecules that is not available for the ligand binding. While at low GM1 densities (~1 %) it is the cholesterol that turns GM1 headgroups invisible, at higher GM1 level (~4 %) it is purely the local density of GM1 molecules that inhibits the recognition. At medium GM1 content, cooperation of the two phenomena occurs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Gokcan Aydogan
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Alena Koukalová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic; Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague 2, Czech Republic.
| | - Ilya I Mikhalyov
- Shemyakin- Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, GSP-7, Russian Federation.
| | - Ivan A Boldyrev
- Shemyakin- Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, GSP-7, Russian Federation.
| | - Jana Humpolíčková
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| |
Collapse
|
32
|
Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2798-806. [PMID: 25091390 DOI: 10.1016/j.bbamem.2014.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023]
Abstract
Depression is one of the most common psychiatric diseases in the population. Agomelatine is a novel antidepressant drug with melatonin receptor agonistic and serotonin 5-HT2C antagonistic properties. Furthermore, being a melatonergic drug, agomelatine has the potential of being used in therapeutic applications like melatonin as an antioxidant, anti-inflammatory and antiapoptotic drug. The action mechanism of agomelatine on the membrane structure has not been clarified yet. In the present study, we aimed to investigate the interaction of agomelatine with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylgylcerol (DPPG) by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). We found that agomelatine interacts with the head group in such a manner that it destabilizes the membrane architecture to a large extent. Thus, agomelatine causes alterations in the order, packing and dynamics of the DPPC and DPPG model membranes. Our results suggest that agomelatine strongly interacts with zwitterionic and charged membrane phospholipids. Because lipid structure and dynamics may have influence on the structure of membrane bound proteins and affect the signal transduction systems of membranes, these effects of agomelatine may be important in its action mechanism.
Collapse
|
33
|
Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy. Anal Bioanal Chem 2014; 406:4797-813. [DOI: 10.1007/s00216-014-7892-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
|
34
|
Ghosh S, Chattoraj S, Bhattacharyya K. Solvation Dynamics and Intermittent Oscillation of Cell Membrane: Live Chinese Hamster Ovary Cell. J Phys Chem B 2014; 118:2949-56. [DOI: 10.1021/jp412631d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
35
|
|
36
|
Lauterbach T, Manna M, Ruhnow M, Wisantoso Y, Wang Y, Matysik A, Oglęcka K, Mu Y, Geifman-Shochat S, Wohland T, Kraut R. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes. PLoS One 2012; 7:e51222. [PMID: 23251459 PMCID: PMC3520979 DOI: 10.1371/journal.pone.0051222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain) is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore) analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS) on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous diffusion behavior in the probe population.
Collapse
Affiliation(s)
- Tim Lauterbach
- School of Biological Sciences, Nanyang Technological University, Singapore
- Institut für Lebensmittel- und Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| | - Manoj Manna
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Maria Ruhnow
- School of Biological Sciences, Nanyang Technological University, Singapore
- Institut für Lebensmittel- und Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| | - Yudi Wisantoso
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yaofeng Wang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Artur Matysik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kamila Oglęcka
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
37
|
Šachl R, Johansson LBÅ, Hof M. Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int J Mol Sci 2012. [PMID: 23203189 PMCID: PMC3546683 DOI: 10.3390/ijms131216141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The formation of membrane heterogeneities, e.g., lipid domains and pores, leads to a redistribution of donor (D) and acceptor (A) molecules according to their affinity to the structures formed and the remaining bilayer. If such changes sufficiently influence the Förster resonance energy transfer (FRET) efficiency, these changes can be further analyzed in terms of nanodomain/pore size. This paper is a continuation of previous work on this theme. In particular, it is demonstrated how FRET experiments should be planned and how data should be analyzed in order to achieve the best possible resolution. The limiting resolution of domains and pores are discussed simultaneously, in order to enable direct comparison. It appears that choice of suitable donor/acceptor pairs is the most crucial step in the design of experiments. For instance, it is recommended to use DA pairs, which exhibit an increased affinity to pores (i.e., partition coefficients K(D,A) > 10) for the determination of pore sizes with radii comparable to the Förster radius R(0). On the other hand, donors and acceptors exhibiting a high affinity to different phases are better suited for the determination of domain sizes. The experimental setup where donors and acceptors are excluded from the domains/pores should be avoided.
Collapse
Affiliation(s)
- Radek Šachl
- Department of Biophysical Chemistry, Jaroslav Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, 182 23, Czech Republic; E-Mail:
| | - Lennart B.-Å. Johansson
- Biophysical Chemistry, Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden; E-Mail:
| | - Martin Hof
- Department of Biophysical Chemistry, Jaroslav Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, 182 23, Czech Republic; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-26605-3264; Fax: +420-28658-2307
| |
Collapse
|