1
|
Hwang PY, Mathur J, Cao Y, Almeida J, Ye J, Morikis V, Cornish D, Clarke M, Stewart SA, Pathak A, Longmore GD. A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Dev Cell 2023; 58:34-50.e9. [PMID: 36626870 PMCID: PMC10010282 DOI: 10.1016/j.devcel.2022.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/10/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jairaj Mathur
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Yanyang Cao
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jose Almeida
- Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jiayu Ye
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Vasilios Morikis
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Daphne Cornish
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Maria Clarke
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Amit Pathak
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Gregory D Longmore
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
2
|
Valat A, Fourel L, Sales A, Machillot P, Bouin AP, Fournier C, Bosc L, Arboléas M, Bourrin-Reynard I, Wagoner Johnson AJ, Bruckert F, Albigès-Rizo C, Picart C. Interplay between integrins and cadherins to control bone differentiation upon BMP-2 stimulation. Front Cell Dev Biol 2023; 10:1027334. [PMID: 36684447 PMCID: PMC9846056 DOI: 10.3389/fcell.2022.1027334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Upon BMP-2 stimulation, the osteoblastic lineage commitment in C2C12 myoblasts is associated with a microenvironmental change that occurs over several days. How does BMP-2 operate a switch in adhesive machinery to adapt to the new microenvironment and to drive bone cell fate is not well understood. Here, we addressed this question for BMP-2 delivered either in solution or physically bound of a biomimetic film, to mimic its presentation to cells via the extracellular matrix (ECM). Methods: Biommetics films were prepared using a recently developed automated method that enable high content studies of cellular processes. Comparative gene expressions were done using RNA sequencing from the encyclopedia of the regulatory elements (ENCODE). Gene expressions of transcription factors, beta chain (1, 3, 5) integrins and cadherins (M, N, and Cad11) were studied using quantitative PCR. ECM proteins and adhesion receptor expressions were also quantified by Western blots and dot blots. Their spatial organization in and around cells was studied using immuno-stainings. The individual effect of each receptor on osteogenic transcription factors and alkaline phosphatase expression were studied using silencing RNA of each integrin and cadherin receptor. The organization of fibronectin was studied using immuno-staining and quantitative microscopic analysis. Results: Our findings highlight a switch of integrin and cadherin expression during muscle to bone transdifferentiation upon BMP-2 stimulation. This switch occurs no matter the presentation mode, for BMP-2 presented in solution or via the biomimetic film. While C2C12 muscle cells express M-cadherin and Laminin-specific integrins, the BMP-2-induced transdifferentiation into bone cells is associated with an increase in the expression of cadherin-11 and collagen-specific integrins. Biomimetic films presenting matrix-bound BMP-2 enable the revelation of specific roles of the adhesive receptors depending on the transcription factor. Discussion: While β3 integrin and cadherin-11 work in concert to control early pSMAD1,5,9 signaling, β1 integrin and Cadherin-11 control RunX2, ALP activity and fibronectin organization around the cells. In contrast, while β1 integrin is also important for osterix transcriptional activity, Cadherin-11 and β5 integrin act as negative osterix regulators. In addition, β5 integrin negatively regulates RunX2. Our results show that biomimetic films can be used to delinate the specific events associated with BMP-2-mediated muscle to bone transdifferentiation. Our study reveals how integrins and cadherins work together, while exerting distinct functions to drive osteogenic programming. Different sets of integrins and cadherins have complementary mechanical roles during the time window of this transdifferentiation.
Collapse
Affiliation(s)
- Anne Valat
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Laure Fourel
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Adria Sales
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Paul Machillot
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Anne-Pascale Bouin
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Carole Fournier
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Lauriane Bosc
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Mélanie Arboléas
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Ingrid Bourrin-Reynard
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Amy J. Wagoner Johnson
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States
| | - Franz Bruckert
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Corinne Albigès-Rizo
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Catherine Picart
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Duan X, Huang J. Deep learning-based 3D cellular force reconstruction directly from volumetric images. Biophys J 2022; 121:2180-2192. [PMID: 35484854 DOI: 10.1016/j.bpj.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
The forces exerted by single cells in the three-dimensional (3D) environments play a crucial role in modulating cellular functions and behaviors closely related to physiological and pathological processes. Cellular force microscopy (CFM) provides a feasible solution for quantifying the mechanical interactions, which usually regains cellular forces from deformation information of extracellular matrices embedded with fluorescent beads. Owing to computational complexity, the traditional 3D-CFM is usually extremely time-consuming, which makes it challenging for efficient force recovery and large-scale sample analysis. With the aid of deep neural networks, this study puts forward a novel data-driven 3D-CFM to reconstruct 3D cellular force fields directly from volumetric images with random fluorescence patterns. The deep learning (DL)-based network is established through stacking deep convolutional neural network (DCNN) and specific function layers. Some necessary physical information associated with constitutive relation of extracellular matrix material is coupled to the data-driven network. The mini-batch stochastic gradient descent and back-propagation algorithms are introduced to ensure its convergence and training efficiency. The network not only have good generalization ability and robustness, but also can recover 3D cellular forces directly from the input fluorescence image pairs. Particularly, the computational efficiency of the DL-based network is at least one to two orders of magnitude higher than that of the traditional 3D-CFM. This study provides a novel scheme for developing high-performance 3D cellular force microscopy to quantitatively characterize mechanical interactions between single cells and surrounding extracellular matrices, which is of vital importance for quantitative investigations in biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;; Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Yang YA, Nguyen E, Sankara Narayana GHN, Heuzé M, Fu C, Yu H, Mège RM, Ladoux B, Sheetz MP. Local contractions regulate E-cadherin rigidity sensing. SCIENCE ADVANCES 2022; 8:eabk0387. [PMID: 35089785 PMCID: PMC8797795 DOI: 10.1126/sciadv.abk0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
E-cadherin is a major cell-cell adhesion molecule involved in mechanotransduction at cell-cell contacts in tissues. Because epithelial cells respond to rigidity and tension in tissue through E-cadherin, there must be active processes that test and respond to the mechanical properties of these adhesive contacts. Using submicrometer, E-cadherin-coated polydimethylsiloxane pillars, we find that cells generate local contractions between E-cadherin adhesions and pull to a constant distance for a constant duration, irrespective of pillar rigidity. These cadherin contractions require nonmuscle myosin IIB, tropomyosin 2.1, α-catenin, and binding of vinculin to α-catenin. Cells spread to different areas on soft and rigid surfaces with contractions, but spread equally on soft and rigid without. We further observe that cadherin contractions enable cells to test myosin IIA-mediated tension of neighboring cells and sort out myosin IIA-depleted cells. Thus, we suggest that epithelial cells test and respond to the mechanical characteristics of neighboring cells through cadherin contractions.
Collapse
Affiliation(s)
- Yi-An Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | - Melina Heuzé
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physiology, Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, Singapore 117593, Singapore
- Institute of Bioengineering and Bioimaging, A*STAR, Singapore 138669, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Corresponding author. (M.P.S.); (B.L.)
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Corresponding author. (M.P.S.); (B.L.)
| |
Collapse
|
5
|
Aladin DMK, Chu YS, Shen S, Robinson RC, Dufour S, Viasnoff V, Borghi N, Thiery JP. Extracellular domains of E-cadherin determine key mechanical phenotypes of an epithelium through cell- and non-cell-autonomous outside-in signaling. PLoS One 2021; 16:e0260593. [PMID: 34937057 PMCID: PMC8694416 DOI: 10.1371/journal.pone.0260593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022] Open
Abstract
Cadherins control intercellular adhesion in most metazoans. In vertebrates, intercellular adhesion differs considerably between cadherins of type-I and type-II, predominantly due to their different extracellular regions. Yet, intercellular adhesion critically depends on actomyosin contractility, in which the role of the cadherin extracellular region is unclear. Here, we dissect the roles of the Extracellular Cadherin (EC) Ig-like domains by expressing chimeric E-cadherin with E-cadherin and cadherin-7 Ig-like domains in cells naturally devoid of cadherins. Using cell-cell separation, cortical tension measurement, tissue stretching and migration assays, we show that distinct EC repeats in the extracellular region of cadherins differentially modulate epithelial sheet integrity, cell-cell separation forces, and cell cortical tension with the Cdc42 pathway, which further differentially regulate epithelial tensile strength, ductility, and ultimately collective migration. Interestingly, dissipative processes rather than static adhesion energy mostly dominate cell-cell separation forces. We provide a framework for the emergence of epithelial phenotypes from cell mechanical properties dependent on EC outside-in signaling.
Collapse
Affiliation(s)
- Darwesh Mohideen Kaderbatcha Aladin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Yeh Shiu Chu
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Shuo Shen
- Sinopharm, Zhengdian, Jiangxia District, Wuhan, Hubei, China
| | | | - Sylvie Dufour
- IMRB, Université Paris Est Créteil, INSERM, Créteil, France
- * E-mail: (NB); (VV); (SD); (JPT)
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- UMI 3639 CNRS, Singapore
- * E-mail: (NB); (VV); (SD); (JPT)
| | - Nicolas Borghi
- Institut Jacques Monod, Université de Paris, CNRS, Paris, France
- * E-mail: (NB); (VV); (SD); (JPT)
| | - Jean Paul Thiery
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Guangzhou Laboratory, International Bioisland, Guangzhou, Haizhu District, China
- * E-mail: (NB); (VV); (SD); (JPT)
| |
Collapse
|
6
|
Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Morand C, Schroeter H, Milenkovic D. Integrated Multi-Omic Analyses of the Genomic Modifications by Gut Microbiome-Derived Metabolites of Epicatechin, 5-(4'-Hydroxyphenyl)-γ-Valerolactone, in TNFalpha-Stimulated Primary Human Brain Microvascular Endothelial Cells. Front Neurosci 2021; 15:622640. [PMID: 33841078 PMCID: PMC8033932 DOI: 10.3389/fnins.2021.622640] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral blood vessels are lined with endothelial cells and form the blood-brain barrier. Their dysfunction constitutes a crucial event in the physiopathology of neurodegenerative disorders and cognitive impairment. Epicatechin can improve cognitive functions and lower the risk for Alzheimer’s disease or stroke. However, molecular mechanisms of epicatechin on brain vascular endothelium are still unexplored. The objective of this study was to investigate the biological effects of gut microbiome-derived metabolites of epicatechin, 5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-sulfate and 5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-O-glucuronide, in TNF-α-stimulated human brain microvascular endothelial cells at low (nM) concentrations by evaluating their multi-omic modification (expression of mRNA, microRNA, long non-coding RNAs, and proteins). We observed that metabolites are biologically active and can simultaneously modulate the expression of protein-coding and non-coding genes as well as proteins. Integrative bioinformatics analysis of obtained data revealed complex networks of genomics modifications by acting at different levels of regulation. Metabolites modulate cellular pathways including cell adhesion, cytoskeleton organization, focal adhesion, signaling pathways, pathways regulating endothelial permeability, and interaction with immune cells. This study demonstrates multimodal mechanisms of action by which epicatechin metabolites could preserve brain vascular endothelial cell integrity, presenting mechanisms of action underlying epicatechin neuroprotective properties.
Collapse
Affiliation(s)
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| | - Christine Morand
- INRAE, UNH, Université Clermont Auvergne, St Genes Champanelle, France
| | | | - Dragan Milenkovic
- INRAE, UNH, Université Clermont Auvergne, St Genes Champanelle, France.,Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Uttagomol J, Ahmad US, Rehman A, Huang Y, Laly AC, Kang A, Soetaert J, Chance R, Teh MT, Connelly JT, Wan H. Evidence for the Desmosomal Cadherin Desmoglein-3 in Regulating YAP and Phospho-YAP in Keratinocyte Responses to Mechanical Forces. Int J Mol Sci 2019; 20:ijms20246221. [PMID: 31835537 PMCID: PMC6940936 DOI: 10.3390/ijms20246221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Desmoglein 3 (Dsg3) plays a crucial role in cell-cell adhesion and tissue integrity. Increasing evidence suggests that Dsg3 acts as a regulator of cellular mechanotransduction, but little is known about its direct role in mechanical force transmission. The present study investigated the impact of cyclic strain and substrate stiffness on Dsg3 expression and its role in mechanotransduction in keratinocytes. A direct comparison was made with E-cadherin, a well-characterized mechanosensor. Exposure of oral and skin keratinocytes to equiaxial cyclic strain promoted changes in the expression and localization of junction assembly proteins. The knockdown of Dsg3 by siRNA blocked strain-induced junctional remodeling of E-cadherin and Myosin IIa. Importantly, the study demonstrated that Dsg3 regulates the expression and localization of yes-associated protein (YAP), a mechanosensory, and an effector of the Hippo pathway. Furthermore, we showed that Dsg3 formed a complex with phospho-YAP and sequestered it to the plasma membrane, while Dsg3 depletion had an impact on both YAP and phospho-YAP in their response to mechanical forces, increasing the sensitivity of keratinocytes to the strain or substrate rigidity-induced nuclear relocation of YAP and phospho-YAP. Plakophilin 1 (PKP1) seemed to be crucial in recruiting the complex containing Dsg3/phospho-YAP to the cell surface since its silencing affected Dsg3 junctional assembly with concomitant loss of phospho-YAP at the cell periphery. Finally, we demonstrated that this Dsg3/YAP pathway has an influence on the expression of YAP1 target genes and cell proliferation. Together, these findings provide evidence of a novel role for Dsg3 in keratinocyte mechanotransduction.
Collapse
Affiliation(s)
- Jutamas Uttagomol
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Ana C. Laly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Angray Kang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Jan Soetaert
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Randy Chance
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - John T. Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
- Correspondence: ; Tel.: +(44)-020-7882-7139; Fax: +(44)-020-7882-7137
| |
Collapse
|
8
|
Le Borgne-Rochet M, Angevin L, Bazellières E, Ordas L, Comunale F, Denisov EV, Tashireva LA, Perelmuter VM, Bièche I, Vacher S, Plutoni C, Seveno M, Bodin S, Gauthier-Rouvière C. P-cadherin-induced decorin secretion is required for collagen fiber alignment and directional collective cell migration. J Cell Sci 2019; 132:jcs.233189. [PMID: 31604795 DOI: 10.1242/jcs.233189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of β1 integrin and of the β-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.
Collapse
Affiliation(s)
- Maïlys Le Borgne-Rochet
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Lucie Angevin
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Elsa Bazellières
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, Cedex 09, France
| | - Laura Ordas
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Franck Comunale
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia.,Tomsk State University, 634050 Tomsk, Russia
| | - Lubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia
| | - Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia
| | - Ivan Bièche
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Martial Seveno
- BioCampus Montpellier, CNRS, INSERM, Univ Montpellier, 34094 Montpellier, France
| | - Stéphane Bodin
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Cécile Gauthier-Rouvière
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| |
Collapse
|
9
|
Li X, He S, Xu J, Li P, Ji B. Cooperative Contraction Behaviors of a One-Dimensional Cell Chain. Biophys J 2019; 115:554-564. [PMID: 30089244 DOI: 10.1016/j.bpj.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
Collective behaviors of multiple cells play important roles in various physiological and pathological processes, but the mechanisms of coordination among cells are highly unknown. Here, we build a one-dimensional cell-chain model to quantitatively study cell cooperativity. Combining experimental and theoretical approaches, we showed that the matrix stiffness, intercellular adhesion strength, and cell-chain length have a significant effect on the cooperative contraction of the cell chains. Cells have strong cooperativity, i.e., exhibiting a united contraction mode, in shorter cell chains or on softer matrix or with higher intercellular adhesion strength. In contrast, cells would exhibit a divided contraction when the cell chain was long or on stiffer matrix or with weaker adhesion strength. In addition, our quantitative results indicated that the cooperativity of cells is regulated by the coupling between matrix stiffness and intercellular adhesion, which can be quantified by an explicit parameter group. These results may provide guidelines for regulating the cooperativity of cells in their collective behaviors in tissue morphogenesis and tissue engineering in biomedical applications.
Collapse
Affiliation(s)
- Xiaojun Li
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Shijie He
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiayi Xu
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids. Proc Natl Acad Sci U S A 2018; 115:12926-12931. [PMID: 30504144 DOI: 10.1073/pnas.1811348115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite extensive knowledge on the mechanisms that drive single-cell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis, remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrow range of rigidities. Fast expansion gives rise to the accumulation of mechanical tension that leads to the rupture of cell-cell contacts and the nucleation of holes within the monolayer, which becomes unstable and undergoes dewetting like a liquid film. This leads to a symmetry breaking and causes the entire aggregate to move as a single entity. Varying the substrate rigidity modulates the extent of dewetting and induces different modes of aggregate motion: "giant keratocytes," where the lamellipodium is a cell monolayer that expands at the front and retracts at the back; "penguins," characterized by bipedal locomotion; and "running spheroids," for nonspreading aggregates. We characterize these diverse modes of collective migration by quantifying the flows and forces that drive them, and we unveil the fundamental physical principles that govern these behaviors, which underscore the biological predisposition of living material to migrate, independent of length scale.
Collapse
|
11
|
Xie J, Zhang D, Ling Y, Yuan Q, Chenchen Z, Wei D, Zhou X. Substrate elasticity regulates vascular endothelial growth factor A (VEGFA) expression in adipose-derived stromal cells: Implications for potential angiogenesis. Colloids Surf B Biointerfaces 2018; 175:576-585. [PMID: 30580148 DOI: 10.1016/j.colsurfb.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023]
Abstract
Adipose-derived stromal cells (ASCs) have potential in bioengineering angiogenesis due to their paracrine role in supporting endothelial tubulogenesis and vascular network formation. However, the precise mechanism of the inner angiogenic capacity of ASCs determined by the biophysical properties of the extracellular matrix needs to be further elucidated. In the current study, we fabricated two silicon-based elastomer polydimethylsiloxane (PDMS) substrates with different stiffnesses (stiff substrate, E = 195 kPa and soft substrate, E = 15 kPa) and found there were cytoskeletal changes in ASCs in response to different substrate stiffnesses. We then showed the expression of vinculin in focal adhesion plaques was enhanced and the nuclear translocation of β-catenin signaling was increased in ASCs on the stiff substrate relative to those on the soft substrate. We next used bioinformatics and found the downstream proteins of β-catenin signaling had binding sites in the promoter of vascular endothelial growth factor A (VEGFA), which is responsible for angiogenesis; then, we further confirmed the enhanced endogenous VEGFA expression in ASCs on the stiff substrate relative to that on the soft substrate. Finally, by using ectogenic VEGFA, we showed the stiff substrate could promote angiogenesis of ASCs in the form of more ring-like formations in 2D and vessel-like structure formations in 3D under VEGFA induction compared to that of the soft substrate. This study not only indicates the inner angiogenic capacity of ASCs but also elucidates the influence of substrate elasticity on ASC differentiation in bioengineering angiogenesis.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Ling
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhou Chenchen
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Du Wei
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Zhang Y, Liao K, Li C, Lai ACK, Foo JJ, Chan V. Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction. Bioengineering (Basel) 2017; 4:E72. [PMID: 28952551 PMCID: PMC5615318 DOI: 10.3390/bioengineering4030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell-matrix and cell-cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell-cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| | - Chuan Li
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Ji-Jinn Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| | - Vincent Chan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| |
Collapse
|
13
|
Watt FM. Engineered Microenvironments to Direct Epidermal Stem Cell Behavior at Single-Cell Resolution. Dev Cell 2017; 38:601-9. [PMID: 27676433 DOI: 10.1016/j.devcel.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Mammalian epidermis is maintained through proliferation of stem cells and differentiation of their progeny. The balance between self-renewal and differentiation is controlled by a variety of interacting intrinsic and extrinsic factors. Although the nature of these interactions is complex, they can be modeled in a reductionist fashion by capturing single epidermal stem cells on micropatterned substrates and exposing them to individual stimuli, alone or in combination, over defined time points. These studies have shown that different extrinsic stimuli trigger a common outcome-initiation of terminal differentiation-by activating different signaling pathways and eliciting different transcriptional responses.
Collapse
Affiliation(s)
- Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
14
|
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017; 74:2999-3009. [PMID: 28401269 PMCID: PMC5501900 DOI: 10.1007/s00018-017-2511-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Muhamed I, Chowdhury F, Maruthamuthu V. Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering (Basel) 2017; 4:E12. [PMID: 28952491 PMCID: PMC5590431 DOI: 10.3390/bioengineering4010012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023] Open
Abstract
The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na⁺, Ca2+, K⁺ channels). The membrane's biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM), vascular endothelial (VE)-cadherin, epithelial (E)-cadherin, integrin) embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
16
|
Devis L, Moiola CP, Masia N, Martinez-Garcia E, Santacana M, Stirbat TV, Brochard-Wyart F, García Á, Alameda F, Cabrera S, Palacios J, Moreno-Bueno G, Abal M, Thomas W, Dufour S, Matias-Guiu X, Santamaria A, Reventos J, Gil-Moreno A, Colas E. Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion, and metastasis in early-stage endometrioid endometrial cancer. J Pathol 2017; 241:475-487. [PMID: 27873306 DOI: 10.1002/path.4851] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023]
Abstract
Endometrial cancer is the most common gynaecological cancer in western countries, being the most common subtype of endometrioid tumours. Most patients are diagnosed at an early stage and present an excellent prognosis. However, a number of those continue to suffer recurrence, without means of identification by risk classification systems. Thus, finding a reliable marker to predict recurrence becomes an important unmet clinical issue. ALCAM is a cell-cell adhesion molecule and member of the immunoglobulin superfamily that has been associated with the genesis of many cancers. Here, we first determined the value of ALCAM as a marker of recurrence in endometrioid endometrial cancer by conducting a retrospective multicentre study of 174 primary tumours. In early-stage patients (N = 134), recurrence-free survival was poorer in patients with ALCAM-positive compared to ALCAM-negative tumours (HR 4.237; 95% CI 1.01-17.76). This difference was more significant in patients with early-stage moderately-poorly differentiated tumours (HR 9.259; 95% CI 2.12-53.47). In multivariate analysis, ALCAM positivity was an independent prognostic factor in early-stage disease (HR 6.027; 95% CI 1.41-25.74). Then we demonstrated in vitro a role for ALCAM in cell migration and invasion by using a loss-of-function model in two endometrial cancer cell lines. ALCAM depletion resulted in a reduced primary tumour size and reduced metastatic local spread in an orthotopic murine model. Gene expression analysis of ALCAM-depleted cell lines pointed to motility, invasiveness, cellular assembly, and organization as the most deregulated functions. Finally, we assessed some of the downstream effector genes that are involved in ALCAM-mediated cell migration; specifically FLNB, TXNRD1, and LAMC2 were validated at the mRNA and protein level. In conclusion, our results highlight the potential of ALCAM as a recurrent biomarker in early-stage endometrioid endometrial cancer and point to ALCAM as an important molecule in endometrial cancer dissemination by regulating cell migration, invasion, and metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Devis
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristian P Moiola
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Masia
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martinez-Garcia
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Santacana
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Ángel García
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | | | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Jose Palacios
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28031 Madrid, Spain
| | - Gema Moreno-Bueno
- Hospital MD Anderson Cancer Centre Madrid, 28033 Madrid, Spain.,Departament of Biochemistry, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, 28046 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, 15706 Santiago de Compostela, Spain
| | - William Thomas
- Department of Natural Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | - Anna Santamaria
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Reventos
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Basic Sciences Department, International University of Catalonia, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
17
|
Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry. Sci Rep 2016; 6:37828. [PMID: 27892530 PMCID: PMC5124948 DOI: 10.1038/srep37828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination.
Collapse
|
18
|
Coburn L, Lopez H, Caldwell BJ, Moussa E, Yap C, Priya R, Noppe A, Roberts AP, Lobaskin V, Yap AS, Neufeld Z, Gomez GA. Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Mol Biol Cell 2016; 27:3436-3448. [PMID: 27605701 PMCID: PMC5221537 DOI: 10.1091/mbc.e16-04-0226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023] Open
Abstract
A computational approach is used to analyze the biomechanics of epithelial cells based on their capacity to adhere to one another and to the substrate and exhibit contact inhibition of locomotion. This approach reproduces emergent properties of epithelial cell aggregates and makes predictions for experimental validation. We used a computational approach to analyze the biomechanics of epithelial cell aggregates—islands, stripes, or entire monolayers—that combines both vertex and contact-inhibition-of-locomotion models to include cell–cell and cell–substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high-order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of basal protrusions, traction forces, and apical aspect ratios that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell–cell junctions and apical stress is not homogeneous across the island. Instead, these parameters are higher at the island center and scale up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Without formally being a three-dimensional model, our approach has the minimal elements necessary to reproduce the distribution of cellular forces and mechanical cross-talk, as well as the distribution of principal stress in cells within epithelial cell aggregates. By making experimentally testable predictions, our approach can aid in mechanical analysis of epithelial tissues, especially when local changes in cell–cell and/or cell–substrate adhesion drive collective cell behavior.
Collapse
Affiliation(s)
- Luke Coburn
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland .,Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Hender Lopez
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland.,Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Benjamin J Caldwell
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elliott Moussa
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Chloe Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Rashmi Priya
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Adrian Noppe
- School of Mathematics and Physics, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Anthony P Roberts
- School of Mathematics and Physics, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Vladimir Lobaskin
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alpha S Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Zoltan Neufeld
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia.,School of Mathematics and Physics, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
19
|
Plutoni C, Bazellieres E, Le Borgne-Rochet M, Comunale F, Brugues A, Séveno M, Planchon D, Thuault S, Morin N, Bodin S, Trepat X, Gauthier-Rouvière C. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol 2016; 212:199-217. [PMID: 26783302 PMCID: PMC4738379 DOI: 10.1083/jcb.201505105] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
P-cadherin induces polarization and collective cell migration through an increase in the strength and anisotropy of mechanical forces, which is mediated by the P-cadherin/β-PIX/Cdc42 axis. Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.
Collapse
Affiliation(s)
- Cédric Plutoni
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Elsa Bazellieres
- Institute for Bioengineering of Catalonia, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Maïlys Le Borgne-Rochet
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Franck Comunale
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Agusti Brugues
- Institute for Bioengineering of Catalonia, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Martial Séveno
- Functional Proteomics Platform, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale U1191, Universités Montpellier, 34094 Montpellier, France
| | - Damien Planchon
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Sylvie Thuault
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Nathalie Morin
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Stéphane Bodin
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Universitat de Barcelona, 08007 Barcelona, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 08010 Barcelona, Spain
| | - Cécile Gauthier-Rouvière
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| |
Collapse
|
20
|
Kollimada SA, Kulkarni AH, Ravan A, Gundiah N. Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry. PLoS One 2016; 11:e0153471. [PMID: 27078632 PMCID: PMC4831833 DOI: 10.1371/journal.pone.0153471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 03/30/2016] [Indexed: 02/04/2023] Open
Abstract
Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells--MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line--were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every ~125 μm from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our understanding of cell movements during developmental patterning and cancer metastasis.
Collapse
Affiliation(s)
- Somanna A. Kollimada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Ankur H. Kulkarni
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Aniket Ravan
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
- * E-mail: ;
| |
Collapse
|
21
|
Muhamed I, Wu J, Sehgal P, Kong X, Tajik A, Wang N, Leckband DE. E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci 2016; 129:1843-54. [PMID: 26966187 DOI: 10.1242/jcs.185447] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Poonam Sehgal
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Arash Tajik
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Department of Chemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Carl W. Woese Institute of Genomic Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Stukel JM, Willits RK. Mechanotransduction of Neural Cells Through Cell-Substrate Interactions. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:173-82. [PMID: 26669274 DOI: 10.1089/ten.teb.2015.0380] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurons and neural stem cells are sensitive to their mechanical and topographical environment, and cell-substrate binding contributes to this sensitivity to activate signaling pathways for basic cell functions. Many transmembrane proteins transmit signals into and out of the cell, including integrins, growth factor receptors, G-protein-coupled receptors, cadherins, cell adhesion molecules, and ion channels. Specifically, integrins are one of the main transmembrane proteins that transmit force across the cell membrane between a cell and its extracellular matrix, making them critical in the study of cell-material interactions. This review focuses on mechanotransduction, defined as the conversion of force a cell generates through cell-substrate bonds to a chemical signal, of neural cells. The chemical signals relay information via pathways through the cellular cytoplasm to the nucleus, where signaling events can affect gene expression. Pathways and the cellular response initiated by substrate binding are explored to better understand their effect on neural cells mechanotransduction. As the results of mechanotransduction affect cell adhesion, cell shape, and differentiation, knowledge regarding neural mechanotransduction is critical for most regenerative strategies in tissue engineering, where novel environments are developed to improve conduit design for central and peripheral nervous system repair in vivo.
Collapse
Affiliation(s)
- Jessica M Stukel
- Department of Biomedical Engineering, The University of Akron , Akron, Ohio
| | | |
Collapse
|
23
|
Tantai JC, Zhang Y, Zhao H. Heterophyllin B inhibits the adhesion and invasion of ECA-109 human esophageal carcinoma cells by targeting PI3K/AKT/β-catenin signaling. Mol Med Rep 2015; 13:1097-104. [PMID: 26647768 PMCID: PMC4732845 DOI: 10.3892/mmr.2015.4659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/20/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to measure the effect of heterophyllin B (HB) on the adhesion and invasion of ECA-109 human esophageal carcinoma cells, and examine the possible mechanism involved. A Cell Counting kit 8 assay was performed to determine the cell viability. Cell adhesion and invasion were determined following treatment of the ECA-109 cells with HB (0, 10, 25 and 50 µM) for 24 h. The levels of phosphorylated (p-)ATK and p-phosphoinositide 3-kinase (PI3K), and the protein levels of β-catenin were measured using western blot analysis. The mRNA and protein expression levels of E-cadherin, vimentin, snail, matrix metalloproteinase (MMP)2 and MMP9 were detected using reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. HB (10, 25 and 50 µM) significantly suppressed the adhesion and invasion of the ECA-109 human esophageal carcinoma cells in a dose-dependant manner. The expression levels of p-ATK, p-PI3K and β-catenin were markedly decreased. The expression of E-cadherin was promoted, whereas the expression levels of snail, vimentin, MMP 2 and MMP 9 were decreased significantly in the ECA-109 cells treated with HB. In addition, HB inhibited the adhesion and invasion induced by PI3K activating peptide in the ECA-109 cells, and the protein expression levels were also adjusted. These results suggested that HB effectively suppressed the adhesion and invasion of the human esophageal carcinoma cells by mediating the PI3K/AKT/β-catenin pathways and regulating the expression levels of adhesion- and invasion-associated genes.
Collapse
Affiliation(s)
- Ji-Cheng Tantai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yao Zhang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Heng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
24
|
Jack of all trades: functional modularity in the adherens junction. Curr Opin Cell Biol 2015; 36:32-40. [DOI: 10.1016/j.ceb.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022]
|
25
|
Hoshiba T, Nemoto E, Sato K, Orui T, Otaki T, Yoshihiro A, Tanaka M. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate) (PMEA) Analogous Polymers for Attachment-Based Cell Enrichment. PLoS One 2015; 10:e0136066. [PMID: 26288362 PMCID: PMC4545787 DOI: 10.1371/journal.pone.0136066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022] Open
Abstract
Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate) (PMEA) substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate) (PBA) and poly(tetrahydrofurfuryl acrylate) (PTHFA), on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy) ethyl acrylate-co-butyl acrylate) (30:70 mol%, PMe2A) and poly(2-(2-methoxyethoxy) ethoxy ethyl acrylate-co-butyl acrylate) (30:70 mol%, PMe3A), which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki, Tsukuba, Ibaraki, Japan
- * E-mail: (MT); (TH)
| | - Eri Nemoto
- Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Toshihiko Orui
- Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Takayuki Otaki
- Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Masaru Tanaka
- Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
- * E-mail: (MT); (TH)
| |
Collapse
|
26
|
Li Q, Makhija E, Hameed F, Shivashankar G. Micropillar displacements by cell traction forces are mechanically correlated with nuclear dynamics. Biochem Biophys Res Commun 2015; 461:372-7. [DOI: 10.1016/j.bbrc.2015.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
|
27
|
DeMali KA, Sun X, Bui GA. Force transmission at cell-cell and cell-matrix adhesions. Biochemistry 2014; 53:7706-17. [PMID: 25474123 DOI: 10.1021/bi501181p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All cells are subjected to mechanical forces throughout their lifetimes. These forces are sensed by cell surface adhesion receptors and trigger robust actin cytoskeletal rearrangements and growth of the associated adhesion complex to counter the applied force. In this review, we discuss how integrins and cadherins sense force and transmit these forces into the cell interior. We focus on the complement of proteins each adhesion complex recruits to bear the force and the signal transduction pathways activated to allow the cell to tune its contractility. A discussion of the similarities, differences, and crosstalk between cadherin- and integrin-mediated force transmission is also presented.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Biochemistry and Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine , Iowa City, Iowa 52242, United States
| | | | | |
Collapse
|
28
|
Affiliation(s)
- D.E. Leckband
- Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois, Urbana, Illinois 61801;
| | - J. de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
29
|
Beaune G, Stirbat TV, Khalifat N, Cochet-Escartin O, Garcia S, Gurchenkov VV, Murrell MP, Dufour S, Cuvelier D, Brochard-Wyart F. How cells flow in the spreading of cellular aggregates. Proc Natl Acad Sci U S A 2014; 111:8055-60. [PMID: 24835175 PMCID: PMC4050549 DOI: 10.1073/pnas.1323788111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like liquid droplets, cellular aggregates, also called "living droplets," spread onto adhesive surfaces. When deposited onto fibronectin-coated glass or polyacrylamide gels, they adhere and spread by protruding a cellular monolayer (precursor film) that expands around the droplet. The dynamics of spreading results from a balance between the pulling forces exerted by the highly motile cells at the periphery of the film, and friction forces associated with two types of cellular flows: (i) permeation, corresponding to the entry of the cells from the aggregates into the film; and (ii) slippage as the film expands. We characterize these flow fields within a spreading aggregate by using fluorescent tracking of individual cells and particle imaging velocimetry of cell populations. We find that permeation is limited to a narrow ring of width ξ (approximately a few cells) at the edge of the aggregate and regulates the dynamics of spreading. Furthermore, we find that the subsequent spreading of the monolayer depends heavily on the substrate rigidity. On rigid substrates, the migration of the cells in the monolayer is similar to the flow of a viscous liquid. By contrast, as the substrate gets softer, the film under tension becomes unstable with nucleation and growth of holes, flows are irregular, and cohesion decreases. Our results demonstrate that the mechanical properties of the environment influence the balance of forces that modulate collective cell migration, and therefore have important implications for the spreading behavior of tissues in both early development and cancer.
Collapse
Affiliation(s)
- Grégory Beaune
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France
| | - Tomita Vasilica Stirbat
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France
| | - Nada Khalifat
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France
| | - Olivier Cochet-Escartin
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France
| | - Simon Garcia
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France
| | - Vasily Valérïévitch Gurchenkov
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France
| | - Michael P Murrell
- Departments of Biomedical Engineering and Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706; and
| | - Sylvie Dufour
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France
| | - Damien Cuvelier
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France
| | - Françoise Brochard-Wyart
- University Pierre and Marie Curie, University of Paris, Institut Curie, 75248 Paris Cedex 05, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Unité Mixte de Recherche 168, Institut Curie, 75248 Paris Cedex 05, France;
| |
Collapse
|
30
|
Ingber DE, Wang N, Stamenović D. Tensegrity, cellular biophysics, and the mechanics of living systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:046603. [PMID: 24695087 PMCID: PMC4112545 DOI: 10.1088/0034-4885/77/4/046603] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life—from individual molecules to whole living organisms—to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.
Collapse
Affiliation(s)
- Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard Medical School, Harvard School of Engineering and Applied Sciences, and Boston Children’s Hospital, 3 Blackfan Circle, CLSB5, Boston, MA 02115
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St, Urbana, IL 61801
| | - Dimitrije Stamenović
- Department of Biomedical Engineering, and Division of Material Science and Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| |
Collapse
|
31
|
Bangasser BL, Rosenfeld SS, Odde DJ. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys J 2014; 105:581-92. [PMID: 23931306 DOI: 10.1016/j.bpj.2013.06.027] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/27/2022] Open
Abstract
The mechanical stiffness of a cell's environment exerts a strong, but variable, influence on cell behavior and fate. For example, different cell types cultured on compliant substrates have opposite trends of cell migration and traction as a function of substrate stiffness. Here, we describe how a motor-clutch model of cell traction, which exhibits a maximum in traction force with respect to substrate stiffness, may provide a mechanistic basis for understanding how cells are tuned to sense the stiffness of specific microenvironments. We find that the optimal stiffness is generally more sensitive to clutch parameters than to motor parameters, but that single parameter changes are generally only effective over a small range of values. By contrast, dual parameter changes, such as coordinately increasing the numbers of both motors and clutches offer a larger dynamic range for tuning the optimum. The model exhibits distinct regimes: at high substrate stiffness, clutches quickly build force and fail (so-called frictional slippage), whereas at low substrate stiffness, clutches fail spontaneously before the motors can load the substrate appreciably (a second regime of frictional slippage). Between the two extremes, we find the maximum traction force, which occurs when the substrate load-and-fail cycle time equals the expected time for all clutches to bind. At this stiffness, clutches are used to their fullest extent, and motors are therefore resisted to their fullest extent. The analysis suggests that coordinate parameter shifts, such as increasing the numbers of motors and clutches, could underlie tumor progression and collective cell migration.
Collapse
|
32
|
Newgreen DF, Dufour S, Howard MJ, Landman KA. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol 2013; 382:305-19. [PMID: 23838398 PMCID: PMC4694584 DOI: 10.1016/j.ydbio.2013.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins.
Collapse
Affiliation(s)
- Donald F Newgreen
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | | | | | | |
Collapse
|
33
|
Al-Robaiy S, Weber B, Simm A, Diez C, Rolewska P, Silber RE, Bartling B. The receptor for advanced glycation end-products supports lung tissue biomechanics. Am J Physiol Lung Cell Mol Physiol 2013; 305:L491-500. [PMID: 23997170 DOI: 10.1152/ajplung.00090.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) and its soluble forms are predominantly expressed in lung but its physiological importance in this organ is not yet fully understood. Since RAGE acts as a cell adhesion molecule, we postulated its physiological importance in the respiratory mechanics. Respiratory function in a buffer-perfused isolated lung system and biochemical parameters of the lung were studied in young, adult, and old RAGE knockout (RAGE-KO) mice and wild-type (WT) mice. Lungs from RAGE-KO mice showed a significant increase in the dynamic lung compliance and a decrease in the maximal expiratory air flow independent of age-related changes. We also determined lower mRNA and protein levels of elastin in lung tissue of RAGE-KO mice. RAGE deficiency did not influence the collagen protein level, lung capillary permeability, and inflammatory parameters (TNF-α, high-mobility group box protein 1) in lung. Overexpressing RAGE as well as soluble RAGE in lung fibroblasts or cocultured lung epithelial cells increased the mRNA expression of elastin. Moreover, immunoprecipitation studies indicated a trans interaction of RAGE in lung epithelial cells. Our findings suggest the physiological importance of RAGE and its soluble forms in supporting the respiratory mechanics in which RAGE trans interactions and the influence on elastin expression might play an important role.
Collapse
Affiliation(s)
- Samiya Al-Robaiy
- Klinik für Herz- und Thoraxchirurgie, Universitätsklinikum Halle (Saale Ernst-Grube-Str. 40, D-06120 Halle (Saale Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
mRNA encoding WAVE-Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochem J 2013; 452:45-55. [PMID: 23452202 DOI: 10.1042/bj20121803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During cell spreading, mammalian cells migrate using lamellipodia formed from a large dense branched actin network which produces the protrusive force required for leading edge advancement. The formation of lamellipodia is a dynamic process and is dependent on a variety of protein cofactors that mediate their local regulation, structural characteristics and dynamics. In the present study, we show that mRNAs encoding some structural and regulatory components of the WAVE [WASP (Wiskott-Aldrich syndrome protein) verprolin homologous] complex are localized to the leading edge of the cell and associated with sites of active translation. Furthermore, we demonstrate that steady-state levels of ArpC2 and Rac1 proteins increase at the leading edge during cell spreading, suggesting that localized protein synthesis has a pivotal role in controlling cell spreading and migration.
Collapse
|
35
|
Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc Natl Acad Sci U S A 2012; 110:842-7. [PMID: 23277553 DOI: 10.1073/pnas.1217279110] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell-cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell-cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell-cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.
Collapse
|