1
|
Yang Z, Marston SB, Gould IR. Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8736-8748. [PMID: 37791815 PMCID: PMC10591477 DOI: 10.1021/acs.jpcb.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Adrenaline acts on β1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 μs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.
Collapse
Affiliation(s)
- Zeyu Yang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| | - Steven B. Marston
- National
Heart & Lung Institute, Imperial College
London, London W12 0NN, U.K.
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| |
Collapse
|
2
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscles and Structure-Activity Relationship. J Chem Inf Model 2023; 63:3462-3473. [PMID: 37204863 PMCID: PMC10496875 DOI: 10.1021/acs.jcim.3c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
3
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscle and Structure Activity Relationship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527323. [PMID: 36798160 PMCID: PMC9934531 DOI: 10.1101/2023.02.06.527323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering systolic calcium concentration, thereby strengthening cardiac function. Here, we examined the effect of our previously identified calcium sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This led to the identification of three novel low affinity binders, which had similar binding affinities to known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM .
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210,Correspondence to: Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210, 614-292-8284 (office), 614-292-1685 (fax),
| |
Collapse
|
4
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
5
|
Hantz ER, Lindert S. Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C. J Chem Inf Model 2022; 62:6201-6208. [PMID: 36383927 PMCID: PMC10497304 DOI: 10.1021/acs.jcim.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium-dependent heart muscle contraction is regulated by the cardiac troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). cNTnC contains one calcium binding site (site II), and altered calcium binding in this site has been studied for decades. It has been previously shown that cNTnC mutants, which increase calcium sensitization may have therapeutic benefits, such as restoring cardiac muscle contractility and functionality post-myocardial infarction events. Here, we computationally characterized eight mutations for their potential effects on calcium binding affinity in site II of cNTnC. We utilized two distinct methods to estimate calcium binding: adaptive steered molecular dynamics (ASMD) and thermodynamic integration (TI). We observed a sensitizing trend for all mutations based on the employed ASMD methodology. The TI results showed excellent agreement with experimentally known calcium binding affinities in wild-type cNTnC. Based on the TI results, five mutants were predicted to increase calcium sensitivity in site II. This study presents an interesting comparison of the two computational methods, which have both been shown to be valuable tools in characterizing the impacts of calcium sensitivity in mutant cNTnC systems.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
6
|
Cool AM, Lindert S. Umbrella Sampling Simulations Measure Switch Peptide Binding and Hydrophobic Patch Opening Free Energies in Cardiac Troponin. J Chem Inf Model 2022; 62:5666-5674. [PMID: 36283742 PMCID: PMC9712266 DOI: 10.1021/acs.jcim.2c00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cardiac troponin (cTn) complex is an important regulatory protein in heart contraction. Upon binding of Ca2+, cTn undergoes a conformational shift that allows the troponin I switch peptide (cTnISP) to be released from the actin filament and bind to the troponin C hydrophobic patch (cTnCHP). Mutations and modifications to this complex can change its sensitivity to Ca2+ and alter the energetics of the transition from the Ca2+-unbound, cTnISP-unbound form to the Ca2+-bound, cTnISP-bound form. We utilized targeted molecular dynamics (TMD) to obtain a trajectory of this transition pathway, followed by umbrella sampling to estimate the free energy associated with the cTnISP-cTnCHP binding and the cTnCHP opening events for wild-type (WT) cTn. We were able to reproduce experimental values for the cTnISP-cTnCHP binding event and obtain cTnCHP opening free energies in agreement with previous computational measurements of smaller cTnC systems. This excellent agreement for WT cTn demonstrated the strength of computational methods in studying the dynamics and energetics of the cTn complex. We then introduced mutations to the cTn complex that cause cardiomyopathy or alter its Ca2+ sensitivity and observed a general decrease in the free energy of opening the cTnCHP. For these same mutations, we observed no general trend in the effect on the cTnISP-cTnCHP binding event. Our method sets the stage for future computational studies on this system that predict the consequences of yet uncharacterized mutations on cTn dynamics and energetics.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
7
|
Mason AB, Tardiff JC, Schwartz SD. Free-Energy Surfaces of Two Cardiac Thin Filament Conformational Changes during Muscle Contraction. J Phys Chem B 2022; 126:3844-3851. [PMID: 35584206 DOI: 10.1021/acs.jpcb.2c01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin core is an important regulatory complex in cardiac sarcomeres. Contraction is initiated by a calcium ion binding to cardiac troponin C (cTnC), initiating a conformational shift within the protein, altering its interactions with cardiac troponin I (cTnI). The change in cTnC-cTnI interactions prompts the C-terminal domain of cTnI to dissociate from actin, allowing tropomyosin to reveal myosin-binding sites on actin. Each of the concerted movements in the cardiac thin filament (CTF) is crucial for allowing the contraction of cardiomyocytes, yet little is known about the free energy associated with each transition, which is vital for understanding contraction on a molecular level. Using metadynamics, we calculated the free-energy surface of two transitions in the CTF: cTnC opening in the presence and absence of Ca2+ and cTnI dissociating from actin with both open and closed cTnC. These results not only provide the free-energy surface of the transitions but will also be shown to determine if the order of transitions in the contraction cycle is important. From our calculations, we found that the calcium ion helps stabilize the open conformation of cTnC and that the C-terminus of cTnI is stabilized by cTnC in the open conformation when dissociating from the actin surface.
Collapse
Affiliation(s)
- Allison B Mason
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd. Room 221, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd. Room 221, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Cool AM, Lindert S. Computational Methods Elucidate Consequences of Mutations and Post-translational Modifications on Troponin I Effective Concentration to Troponin C. J Phys Chem B 2021; 125:7388-7396. [PMID: 34213339 DOI: 10.1021/acs.jpcb.1c03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ binding to cardiac troponin C (cTnC) causes a conformational shift that exposes a hydrophobic patch (cTnCHP) for binding of the cTnI switch peptide (cTnISP), ultimately resulting in contraction of the heart. The inhibitory peptide (cTnIIP), attached at the N-terminal end of the cTnISP, serves as a tether for the cTnISP to the rest of the troponin complex. Due to this tethered nature, the cTnISP remains within proximity of the hydrophobic patch region, resulting in the cTnCHP experiencing an elevated "effective concentration" of the cTnISP. Mutations to the cTnIIP region have been hypothesized to cause disease by affecting the ability of the cTnISP to "find" the hydrophobic patch, resulting in alterations to the heart's ability to contract normally. We tested this hypothesis using molecular dynamics (MD) simulations of the troponin complex using a model that contained all three subunits of troponin: C, I, and T. We developed methods that allowed us to quantitatively measure the effective concentration of the cTnISP from the simulations. A significant reduction in the cTnISP effective concentration was observed when the cTnIIP was removed from the system, showcasing the importance of a tethered cTnISP. Through accelerated MD methods, we proposed the minimum effective concentration of a tethered cTnISP to be approximately 21 mM. Modification of the cTnIIP via PKC-mediated phosphorylation of T143 was shown to significantly increase the estimated effective concentration of cTnISP, help the cTnISP find the cTnCHP more effectively, and maintain the relative shape of the cTnIIP when compared to the native model. All of these data indicate that pT143 may be able to help promote binding of cTnISP to the cTnCHP. We then tested six mutations within the cTnIIP region that are known cTnC Ca2+-sensitizing mutations and have been linked with cardiomyopathy. We did not observe a significant reduction in the effective concentration upon the introduction of these mutations; however, we did observe increased variability in the flexibility and dynamics of the cTnIIP region when compared to native. Our observations led us to hypothesize that the mechanism by which these cardiomyopathic mutations affect Ca2+ sensitivity is by altering the off rate of cTnISP from the hydrophobic patch.
Collapse
Affiliation(s)
- Austin M Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Immadisetty K, Sun B, Kekenes-Huskey PM. Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins. J Phys Chem B 2021; 125:6390-6405. [PMID: 34115511 PMCID: PMC8848088 DOI: 10.1021/acs.jpcb.1c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the parvalbumin (PV) family of calcium (Ca2+) binding proteins (CBPs) share a relatively high level of sequence similarity. However, their Ca2+ affinities and selectivities against competing ions like Mg2+ can widely vary. We conducted molecular dynamics simulations of several α-parvalbumin (αPV) constructs with micromolar to nanomolar Ca2+ affinities to identify structural and dynamic features that contribute to their binding of ions. Specifically, we examined a D94S/G98E construct with a lower Ca2+ affinity (≈-18 kcal/mol) relative to the wild type (WT) (≈-22 kcal/mol) and an S55D/E59D variant with enhanced affinity (≈-24 kcal/mol). Additionally, we also examined the binding of Mg2+ to these isoforms, which is much weaker than Ca2+. We used mean spherical approximation (MSA) theory to evaluate ion binding thermodynamics within the proteins' EF-hand domains to account for the impact of ions' finite sizes and the surrounding electrolyte composition. While the MSA scores differentiated Mg2+ from Ca2+, they did not indicate that Ca2+ binding affinities at the binding loop differed between the PV isoforms. Instead, molecular mechanics generalized Born surface area (MM/GBSA) approximation energies, which we used to quantify the thermodynamic cost of structural rearrangement of the proteins upon binding ions, indicated that S55D/E59D αPV favored Ca2+ binding by -20 kcal/mol relative to WT versus 30 kcal/mol for D94S/G98E αPV. Meanwhile, Mg2+ binding was favored for the S55D/E59D αPV and D94S/G98E αPV variants by -18.32 and -1.65 kcal/mol, respectively. These energies implicate significant contributions to ion binding beyond oxygen coordination at the binding loop, which stemmed from changes in α-helicity, β-sheet character, and hydrogen bonding. Hence, Ca2+ affinity and selectivity against Mg2+ are emergent properties stemming from both local effects within the proteins' ion binding sites as well as non-local contributions elsewhere. Our findings broaden our understanding of the molecular bases governing αPV ion binding that are likely shared by members of the broad family of CBPs.
Collapse
Affiliation(s)
| | - Bin Sun
- Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | |
Collapse
|
10
|
Genchev GZ, Kobayashi M, Kobayashi T, Lu H. Molecular dynamics provides new insights into the mechanism of calcium signal transduction and interdomain interactions in cardiac troponin. FEBS Open Bio 2021; 11:1841-1853. [PMID: 33085832 PMCID: PMC8255835 DOI: 10.1002/2211-5463.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding the regulation of cardiac muscle contraction at a molecular level is crucial for the development of therapeutics for heart conditions. Despite the availability of atomic structures of the protein components of cardiac muscle thin filaments, detailed insights into their dynamics and response to calcium are yet to be fully depicted. In this study, we used molecular dynamics simulations of the core domains of the cardiac muscle protein troponin to characterize the equilibrium dynamics of its calcium-bound and calcium-free forms, with a focus on elements of cardiac muscle contraction activation and deactivation, that is, calcium binding to the cardiac troponin Ca2+ -binding subunit (TnC) and the release of the switch region of the troponin inhibitory subunit (TnI) from TnC. The process of calcium binding to the TnC binding site is described as a three-step process commencing with calcium capture by the binding site residues, followed by cooperative residue interplay bringing the calcium ion to the binding site, and finally, calcium-water exchange. Furthermore, we uncovered a set of TnC-TnI interdomain interactions that are critical for TnC N-lobe hydrophobic pocket dynamics. Absence of these interactions allows the closure of the TnC N-lobe hydrophobic pocket while the TnI switch region remains expelled, whereas if the interactions are maintained, the hydrophobic pocket remains open. Modification of these interactions may fine-tune the ability of the TnC N-lobe hydrophobic pocket to close or remain open, modulate cardiac contractility and present potential therapy-relevant targets.
Collapse
Affiliation(s)
- Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria.,Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Minae Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Tomoyoshi Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Hantz ER, Lindert S. Adaptative Steered Molecular Dynamics Study of Mutagenesis Effects on Calcium Affinity in the Regulatory Domain of Cardiac Troponin C. J Chem Inf Model 2021; 61:3052-3057. [PMID: 34080877 DOI: 10.1021/acs.jcim.1c00419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcium-dependent cardiac muscle contraction is regulated by the protein complex troponin (cTn) and specifically by the regulatory N-terminal domain (N-cTnC) which contains one active Ca2+ binding site (site II). It has been previously shown that cardiac muscle contractility and functionality is affected by mutations in N-cTnC which alter calcium binding affinity. Here, we describe the application of adaptive steered molecular dynamics to characterize the influence of N-cTnC mutations on site II calcium binding affinity. We observed the correct trends for all of the studied calcium sensitizing and desensitizing mutants, in conjunction with loop II perturbations. Additionally, the potential of mean force accuracy was shown to increase substantially with increasingly slower speeds and using fewer trajectories. This study presents a novel approach to computationally estimate the Ca2+ binding affinity of N-cTnC structures and is a valuable potential tool to support the design and characterization of novel mutations with potential therapeutic benefits.
Collapse
Affiliation(s)
- Eric R Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Marques MA, Landim-Vieira M, Moraes AH, Sun B, Johnston JR, Dieseldorff Jones KM, Cino EA, Parvatiyar MS, Valera IC, Silva JL, Galkin VE, Chase PB, Kekenes-Huskey PM, de Oliveira GAP, Pinto JR. Anomalous structural dynamics of minimally frustrated residues in cardiac troponin C triggers hypertrophic cardiomyopathy. Chem Sci 2021; 12:7308-7323. [PMID: 34163821 PMCID: PMC8171346 DOI: 10.1039/d1sc01886h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Adolfo H Moraes
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago Maywood IL USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Karissa M Dieseldorff Jones
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School Norfolk VA USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University Tallahassee FL USA
| | | | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| |
Collapse
|
13
|
Coldren WH, Tikunova SB, Davis JP, Lindert S. Discovery of Novel Small-Molecule Calcium Sensitizers for Cardiac Troponin C: A Combined Virtual and Experimental Screening Approach. J Chem Inf Model 2020; 60:3648-3661. [PMID: 32633957 DOI: 10.1021/acs.jcim.0c00452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heart failure is a leading cause of death throughout the world and is triggered by a disruption of the cardiac contractile machinery. This machinery is regulated in a calcium-dependent manner by the protein complex troponin. Calcium binds to the N-terminal domain of cardiac troponin C (cNTnC) setting into motion the cascade of events leading to muscle contraction. Because of the severity and prevalence of heart failure, there is a strong need to develop small-molecule therapeutics designed to increase the calcium sensitivity of cardiac troponin in order to treat this devastating condition. Molecules that are able to stabilize an open configuration of cNTnC and additionally facilitate the binding of the cardiac troponin I (cTnI) switch peptide have the potential to enable increased calcium sensitization and strengthened cardiac function. Here, we employed a high throughput virtual screening methodology built upon the ability of computational docking to reproduce known experimental results and to accurately recognize cNTnC conformations conducive to small molecule binding using a receiver operator characteristic curve analysis. This approach combined with concurrent stopped-flow kinetic experimental verification led to the identification of a number of sensitizers, which slowed the calcium off-rate. An initial hit, compound 4, was identified with medium affinity (84 ± 30 μM). Through refinement, a calcium sensitizing agent, compound 5, with an apparent affinity of 1.45 ± 0.09 μM was discovered. This molecule is one of the highest affinity calcium sensitizers known to date.
Collapse
Affiliation(s)
- William H Coldren
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Svetlana B Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan P Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Bowman JD, Lindert S. Computational Studies of Cardiac and Skeletal Troponin. Front Mol Biosci 2019; 6:68. [PMID: 31448287 PMCID: PMC6696891 DOI: 10.3389/fmolb.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Troponin is a key regulatory protein in muscle contraction, consisting of three subunits troponin C (TnC), troponin I (TnI), and troponin T (TnT). Calcium association to TnC initiates contraction by causing a series of dynamic and conformational changes that allow the switch peptide of TnI to bind and subsequently cross bridges to form between the thin and thick filament of the sarcomere. Owing to its pivotal role in contraction regulation, troponin has been the focus of numerous computational studies over the last decade. These studies elegantly supplemented a large volume of experimental work and focused on the structure, dynamics and function of the whole troponin complex, individual subunits, and even on segments of the thin filament. Molecular dynamics, Brownian dynamics, and free energy simulations have been used to elucidate the conformational dynamics and underlying free energy landscape of troponin, calcium, and switch peptide binding, as well as the effect of disease mutations, small molecules and post-translational modifications such as phosphorylation. Frequently, simulations have been used to confirm or explain experimental observations. Computer-aided drug discovery tools have been employed to identify novel potential calcium sensitizing agents binding to the TnC-TnI interface. Finally, Markov modeling has contributed to simulating contraction within the sarcomere on the mesoscale. Here we are reviewing and classifying the existing computational work on troponin and its subunits, outline current gaps in simulations elucidating troponin's role in contraction and suggest potential future developments in the field.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Bowman JD, Coldren WH, Lindert S. Mechanism of Cardiac Troponin C Calcium Sensitivity Modulation by Small Molecules Illuminated by Umbrella Sampling Simulations. J Chem Inf Model 2019; 59:2964-2972. [PMID: 31141358 DOI: 10.1021/acs.jcim.9b00256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac troponin C (cTnC) binds intracellular calcium and subsequently cardiac troponin I (cTnI), initiating cardiac muscle contraction. Due to its role in contraction, cTnC has been a therapeutic target in the search for small molecules to treat conditions that interfere with normal muscle contraction like the heritable cardiomyopathies. Structural studies have shown the binding location of small molecules such as bepridil, dfbp-o, 3-methyldiphenylamine (DPA), and W7 to be a hydrophobic pocket in the regulatory domain of cTnC (cNTnC) but have not shown the influence of these small molecules on the energetics of opening this domain. Here we describe an application of an umbrella sampling method used to elucidate the impact these calcium sensitivity modulators have on the free energy of cNTnC hydrophobic patch opening. We found that all these molecules lowered the free energy of opening in the absence of the cTnI, with bepridil facilitating the least endergonic transformation. In the presence of cTnI, however, we saw a stabilization of the open configuration due to DPA and dfbp-o binding, and a destabilization of the open configuration imparted by bepridil and W7. Predicted poor binding molecule NSC34337 left the hydrophobic patch in under 3 ns in conventional MD simulations suggesting that only hydrophobic patch binders stabilized the open conformation. In conclusion, this study presents a novel approach to study the impact of small molecules on hydrophobic patch opening through umbrella sampling, and it proposes mechanisms for calcium sensitivity modulation.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - William H Coldren
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
16
|
Bowman JD, Lindert S. Molecular Dynamics and Umbrella Sampling Simulations Elucidate Differences in Troponin C Isoform and Mutant Hydrophobic Patch Exposure. J Phys Chem B 2018; 122:7874-7883. [PMID: 30070845 DOI: 10.1021/acs.jpcb.8b05435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Troponin C (TnC) facilitates muscle contraction through calcium-binding within its N-terminal region (NTnC). As previously observed using molecular dynamics (MD) simulations, this calcium-binding event leads to an increase in the dynamics of helices lining a hydrophobic patch on TnC. Simulation times of multiple microseconds were required to even see a partial opening of the hydrophobic patch, limiting the ability to thoroughly and quantitatively investigate these rare events. Here we describe the application of umbrella sampling to probe the TnC hydrophobic patch opening in a more targeted and quantitative fashion. Umbrella sampling was utilized to investigate the differences in the free energy of opening between cardiac (cTnC) and fast skeletal TnC (sTnC). We found that, in agreement with previous reports, holo (calcium-bound) sTnC had a lower free energy of opening compared with holo cTnC. Additionally, differences in the free energy of opening of hypertrophic (HCM) and dilated cardiomyopathy (DCM) cTnC systems were investigated. MD simulations and umbrella sampling revealed a lower free energy of opening for the HCM mutations A8V and A31S, as well as the calcium-sensitizing mutation L48Q. The DCM mutations, Y5H, Q50R, and E59D/D75Y, all exhibited a higher free energy of opening. An umbrella sampling simulation of cTnI-bound holo cTnC exhibited the lowest free energy in the open configuration, in agreement with experimental data. In conclusion, this study presents a novel and successful protocol for applying umbrella sampling simulations to quantitatively study the molecular basis of muscle contraction and proposes a mechanism by which HCM and DCM-associated mutations influence contraction.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
17
|
Aprahamian ML, Tikunova SB, Price MV, Cuesta AF, Davis JP, Lindert S. Successful Identification of Cardiac Troponin Calcium Sensitizers Using a Combination of Virtual Screening and ROC Analysis of Known Troponin C Binders. J Chem Inf Model 2017; 57:3056-3069. [PMID: 29144742 DOI: 10.1021/acs.jcim.7b00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium-dependent cardiac muscle contraction is regulated by the protein complex troponin. Calcium binds to the N-terminal domain of troponin C (cNTnC) which initiates the process of contraction. Heart failure is a consequence of a disruption of this process. With the prevalence of this condition, a strong need exists to find novel compounds to increase the calcium sensitivity of cNTnC. Desirable are small chemical molecules that bind to the interface between cTnC and the cTnI switch peptide and exhibit calcium sensitizing properties by possibly stabilizing cTnC in an open conformation. To identify novel drug candidates, we employed a structure-based drug discovery protocol that incorporated the use of a relaxed complex scheme (RCS). In preparation for the virtual screening, cNTnC conformations were identified based on their ability to correctly predict known cNTnC binders using a receiver operating characteristics analysis. Following a virtual screen of the National Cancer Institute's Developmental Therapeutic Program database, a small number of molecules were experimentally tested using stopped-flow kinetics and steady-state fluorescence titrations. We identified two novel compounds, 3-(4-methoxyphenyl)-6,7-chromanediol (NSC600285) and 3-(4-methylphenyl)-7,8-chromanediol (NSC611817), that show increased calcium sensitivity of cTnC in the presence of the regulatory domain of cTnI. The effects of NSC600285 and NSC611817 on the calcium dissociation rate was stronger than that of the known calcium sensitizer bepridil. Thus, we identified a 3-phenylchromane group as a possible key pharmacophore in the sensitization of cardiac muscle contraction. Building on this finding is of interest to researchers working on development of drugs for calcium sensitization.
Collapse
Affiliation(s)
- Melanie L Aprahamian
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| | - Svetlana B Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Morgan V Price
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Andres F Cuesta
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Jonathan P Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Stevens CM, Rayani K, Genge CE, Singh G, Liang B, Roller JM, Li C, Li AY, Tieleman DP, van Petegem F, Tibbits GF. Characterization of Zebrafish Cardiac and Slow Skeletal Troponin C Paralogs by MD Simulation and ITC. Biophys J 2017; 111:38-49. [PMID: 27410732 DOI: 10.1016/j.bpj.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity that we have measured by ITC.
Collapse
Affiliation(s)
- Charles M Stevens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gurpreet Singh
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Bo Liang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Janine M Roller
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cindy Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alison Yueh Li
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Peter Tieleman
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
19
|
Stevens CM, Rayani K, Singh G, Lotfalisalmasi B, Tieleman DP, Tibbits GF. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca 2+-sensitizing mutations. J Biol Chem 2017; 292:11915-11926. [PMID: 28533433 DOI: 10.1074/jbc.m116.770776] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/07/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca2+ TnC binding Ca2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnISW). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca2+ and TnISW Surprisingly the Ca2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca2+-binding site of cTnC.
Collapse
Affiliation(s)
- Charles M Stevens
- Cardiovascular Sciences, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kaveh Rayani
- Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gurpreet Singh
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bairam Lotfalisalmasi
- Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Glen F Tibbits
- Cardiovascular Sciences, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Departments of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
20
|
Votapka LW, Jagger BR, Heyneman AL, Amaro RE. SEEKR: Simulation Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine Binding. J Phys Chem B 2017; 121:3597-3606. [PMID: 28191969 PMCID: PMC5562489 DOI: 10.1021/acs.jpcb.6b09388] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present the Simulation Enabled Estimation of Kinetic Rates (SEEKR) package, a suite of open-source scripts and tools designed to enable researchers to perform multiscale computation of the kinetics of molecular binding, unbinding, and transport using a combination of molecular dynamics, Brownian dynamics, and milestoning theory. To demonstrate its utility, we compute the kon, koff, and ΔGbind for the protein trypsin with its noncovalent binder, benzamidine, and examine the kinetics and other results generated in the context of the new software, and compare our findings to previous studies performed on the same system. We compute a kon estimate of (2.1 ± 0.3) × 107 M-1 s-1, a koff estimate of 83 ± 14 s-1, and a ΔGbind of -7.4 ± 0.1 kcal·mol-1, all of which compare closely to the experimentally measured values of 2.9 × 107 M-1 s-1, 600 ± 300 s-1, and -6.71 ± 0.05 kcal·mol-1, respectively.
Collapse
Affiliation(s)
- Lane W. Votapka
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
- University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093
| | | | | | - Rommie E. Amaro
- University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093
| |
Collapse
|
21
|
Dewan S, McCabe KJ, Regnier M, McCulloch AD. Insights and Challenges of Multi-Scale Modeling of Sarcomere Mechanics in cTn and Tm DCM Mutants-Genotype to Cellular Phenotype. Front Physiol 2017; 8:151. [PMID: 28352236 PMCID: PMC5348544 DOI: 10.3389/fphys.2017.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 01/18/2023] Open
Abstract
Dilated Cardiomyopathy (DCM) is a leading cause of sudden cardiac death characterized by impaired pump function and dilatation of cardiac ventricles. In this review we discuss various in silico approaches to elucidating the mechanisms of genetic mutations leading to DCM. The approaches covered in this review focus on bridging the spatial and temporal gaps that exist between molecular and cellular processes. Mutations in sarcomeric regulatory thin filament proteins such as the troponin complex (cTn) and Tropomyosin (Tm) have been associated with DCM. Despite the experimentally-observed myofilament measures of contractility in the case of these mutations, the mechanisms by which the underlying molecular changes and protein interactions scale up to organ failure by these mutations remains elusive. The review highlights multi-scale modeling approaches and their applicability to study the effects of sarcomeric gene mutations in-silico. We discuss some of the insights that can be gained from computational models of cardiac biomechanics when scaling from molecular states to cellular level.
Collapse
Affiliation(s)
- Sukriti Dewan
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kimberly J McCabe
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael Regnier
- Departments of Bioengineering and Medicine, University of Washington Seattle, WA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Siddiqui JK, Tikunova SB, Walton SD, Liu B, Meyer M, de Tombe PP, Neilson N, Kekenes-Huskey PM, Salhi HE, Janssen PML, Biesiadecki BJ, Davis JP. Myofilament Calcium Sensitivity: Consequences of the Effective Concentration of Troponin I. Front Physiol 2016; 7:632. [PMID: 28066265 PMCID: PMC5175494 DOI: 10.3389/fphys.2016.00632] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/05/2016] [Indexed: 12/04/2022] Open
Abstract
Control of calcium binding to and dissociation from cardiac troponin C (TnC) is essential to healthy cardiac muscle contraction/relaxation. There are numerous aberrant post-translational modifications and mutations within a plethora of contractile, and even non-contractile, proteins that appear to imbalance this delicate relationship. The direction and extent of the resulting change in calcium sensitivity is thought to drive the heart toward one type of disease or another. There are a number of molecular mechanisms that may be responsible for the altered calcium binding properties of TnC, potentially the most significant being the ability of the regulatory domain of TnC to bind the switch peptide region of TnI. Considering TnI is essentially tethered to TnC and cannot diffuse away in the absence of calcium, we suggest that the apparent calcium binding properties of TnC are highly dependent upon an “effective concentration” of TnI available to bind TnC. Based on our previous work, TnI peptide binding studies and the calcium binding properties of chimeric TnC-TnI fusion constructs, and building upon the concept of effective concentration, we have developed a mathematical model that can simulate the steady-state and kinetic calcium binding properties of a wide assortment of disease-related and post-translational protein modifications in the isolated troponin complex and reconstituted thin filament. We predict that several TnI and TnT modifications do not alter any of the intrinsic calcium or TnI binding constants of TnC, but rather alter the ability of TnC to “find” TnI in the presence of calcium. These studies demonstrate the apparent consequences of the effective TnI concentration in modulating the calcium binding properties of TnC.
Collapse
Affiliation(s)
- Jalal K Siddiqui
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Svetlana B Tikunova
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Shane D Walton
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Bin Liu
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Meredith Meyer
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Pieter P de Tombe
- Cell and Molecular Physiology, Loyola University Chicago Maywood, IL, USA
| | - Nathan Neilson
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | | | - Hussam E Salhi
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| |
Collapse
|
23
|
Molecular Basis of S100A1 Activation at Saturating and Subsaturating Calcium Concentrations. Biophys J 2016; 110:1052-63. [PMID: 26958883 DOI: 10.1016/j.bpj.2015.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The S100A1 protein mediates a wide variety of physiological processes through its binding of calcium (Ca(2+)) and endogenous target proteins. S100A1 presents two Ca(2+)-binding domains: a high-affinity "canonical" EF (cEF) hand and a low-affinity "pseudo" EF (pEF) hand. Accumulating evidence suggests that both Ca(2+)-binding sites must be saturated to stabilize an open state conducive to peptide recognition, yet the pEF hand's low affinity limits Ca(2+) binding at normal physiological concentrations. To understand the molecular basis of Ca(2+) binding and open-state stabilization, we performed 100 ns molecular dynamics simulations of S100A1 in the apo/holo (Ca(2+)-free/bound) states and a half-saturated state, for which only the cEF sites are Ca(2+)-bound. Our simulations indicate that the pattern of oxygen coordination about Ca(2+) in the cEF relative to the pEF site contributes to the former's higher affinity, whereas Ca(2+) binding strongly reshapes the protein's conformational dynamics by disrupting β-sheet coupling between EF hands. Moreover, modeling of the half-saturated configuration suggests that the open state is unstable and reverts toward a closed state in the absence of the pEF Ca(2+) ion. These findings indicate that Ca(2+) binding at the cEF site alone is insufficient to stabilize opening; thus, posttranslational modification of the protein may be required for target peptide binding at subsaturating intracellular Ca(2+) levels.
Collapse
|
24
|
Papadaki M, Marston SB. The Importance of Intrinsically Disordered Segments of Cardiac Troponin in Modulating Function by Phosphorylation and Disease-Causing Mutations. Front Physiol 2016; 7:508. [PMID: 27853436 PMCID: PMC5089987 DOI: 10.3389/fphys.2016.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Troponin plays a central role in regulation of muscle contraction. It is the Ca2+ switch of striated muscles including the heart and in the cardiac muscle it is physiologically modulated by PKA-dependent phosphorylation at Ser22 and 23. Many cardiomyopathy-related mutations affect Ca2+ regulation and/or disrupt the relationship between Ca2+ binding and phosphorylation. Unlike the mechanism of heart activation, the modulation of Ca2+-sensitivity by phosphorylation of the cardiac specific N-terminal segment of TnI (1–30) is structurally subtle and has proven hard to investigate. The crystal structure of cardiac troponin describes only the relatively stable core of the molecule and the crucial mobile parts of the molecule are missing including TnI C-terminal region, TnI (1–30), TnI (134–149) (“inhibitory” peptide) and the C-terminal 28 amino acids of TnT that are intrinsically disordered. Recent studies have been performed to answer this matter by building structural models of cardiac troponin in phosphorylated and dephosphorylated states based on peptide NMR studies. Now these have been updated by more recent concepts derived from molecular dynamic simulations treating troponin as a dynamic structure. The emerging model confirms the stable core structure of troponin and the mobile structure of the intrinsically disordered segments. We will discuss how we can describe these segments in terms of dynamic transitions between a small number of states, with the probability distributions being altered by phosphorylation and by HCM or DCM-related mutations that can explain how Ca2+-sensitivity is modulated by phosphorylation and the effects of mutations.
Collapse
Affiliation(s)
- Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University of Chicago Maywood, IL, USA
| | - Steven B Marston
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| |
Collapse
|
25
|
Robertson IM, Pineda-Sanabria SE, Yan Z, Kampourakis T, Sun YB, Sykes BD, Irving M. Reversible Covalent Binding to Cardiac Troponin C by the Ca2+-Sensitizer Levosimendan. Biochemistry 2016; 55:6032-6045. [DOI: 10.1021/acs.biochem.6b00758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ian M. Robertson
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sandra E. Pineda-Sanabria
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ziqian Yan
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Thomas Kampourakis
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Yin-Biao Sun
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Brian D. Sykes
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Malcolm Irving
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| |
Collapse
|
26
|
Dewan S, McCabe KJ, Regnier M, McCulloch AD, Lindert S. Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. J Phys Chem B 2016; 120:8264-75. [PMID: 27133568 PMCID: PMC5001916 DOI: 10.1021/acs.jpcb.6b01950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in cardiac troponin C (D75Y, E59D, and G159D), a key regulatory protein of myofilament contraction, have been associated with dilated cardiomyopathy (DCM). Despite reports of altered myofilament function in these mutants, the underlying molecular alterations caused by these mutations remain elusive. Here we investigate in silico the intramolecular mechanisms by which these mutations affect myofilament contraction. On the basis of the location of cardiac troponin C (cTnC) mutations, we tested the hypothesis that intramolecular effects can explain the altered myofilament calcium sensitivity of force development for D75Y and E59D cTnC, whereas altered cardiac troponin C-troponin I (cTnC-cTnI) interaction contributes to the reported contractile effects of the G159D mutation. We employed a multiscale approach combining molecular dynamics (MD) and Brownian dynamics (BD) simulations to estimate cTnC calcium association and hydrophobic patch opening. We then integrated these parameters into a Markov model of myofilament activation to compute the steady-state force-pCa relationship. The analysis showed that myofilament calcium sensitivity with D75Y and E59D can be explained by changes in calcium binding affinity of cTnC and the rate of hydrophobic patch opening, if a partial cTnC interhelical opening angle (110°) is sufficient for cTnI switch peptide association to cTnC. In contrast, interactions between cTnC and cTnI within the cardiac troponin complex must also be accounted for to explain contractile alterations due to G159D. In conclusion, this is the first multiscale in silico study to elucidate how direct molecular effects of genetic mutations in cTnC translate to altered myofilament contractile function.
Collapse
Affiliation(s)
- Sukriti Dewan
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, 92093
| | - Kimberly J. McCabe
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, 92093
| | - Michael Regnier
- Dept. of Bioengineering, University of Washington, Seattle, WA 98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, 92093
| | - Steffen Lindert
- Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
27
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
28
|
Zamora JE, Papadaki M, Messer AE, Marston SB, Gould IR. Troponin structure: its modulation by Ca2+and phosphorylation studied by molecular dynamics simulations. Phys Chem Chem Phys 2016; 18:20691-707. [DOI: 10.1039/c6cp02610a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The only available crystal structure of the human cardiac troponin molecule (cTn) in the Ca2+activated state does not include crucial segments, including the N-terminus of the cTn inhibitory subunit (cTnI).
Collapse
Affiliation(s)
- Juan Eiros Zamora
- Department of Chemistry
- Institute of Chemical Biology
- Imperial College London
- UK
| | - Maria Papadaki
- National Heart & Lung Institute
- Myocardial Function Section
- Imperial College London
- UK
| | - Andrew E. Messer
- National Heart & Lung Institute
- Myocardial Function Section
- Imperial College London
- UK
| | - Steven B. Marston
- National Heart & Lung Institute
- Myocardial Function Section
- Imperial College London
- UK
| | - Ian R. Gould
- Department of Chemistry
- Institute of Chemical Biology
- Imperial College London
- UK
| |
Collapse
|
29
|
Lindert S, Cheng Y, Kekenes-Huskey P, Regnier M, McCammon JA. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations. Biophys J 2015; 108:395-407. [PMID: 25606687 DOI: 10.1016/j.bpj.2014.11.3461] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022] Open
Abstract
Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Pharmacology, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California.
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Peter Kekenes-Huskey
- Department of Pharmacology, University of California San Diego, La Jolla, California; Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Pharmacology, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California; Department of Chemistry and Biochemistry, National Biomedical Computation Resource, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California
| |
Collapse
|
30
|
Votapka LW, Amaro RE. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning. PLoS Comput Biol 2015; 11:e1004381. [PMID: 26505480 PMCID: PMC4624728 DOI: 10.1371/journal.pcbi.1004381] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with experimentally and theoretically obtained values. We predicted the association rate of a small charged molecule toward both a charged and an uncharged spherical receptor and verified the estimated value with Smoluchowski theory. We also calculated the kon rate constant for superoxide dismutase with its natural substrate, O2-, in a validation of a previous experiment using similar methods but with a number of important improvements. We also calculated the kon for a new system: the N-terminal domain of Troponin C with its natural substrate Ca2+. The kon calculated for the latter two systems closely resemble experimentally obtained values. This novel multiscale approach is computationally cheaper and more parallelizable when compared to other methods of similar accuracy. We anticipate that this methodology will be useful for predicting kinetic rate constants and for understanding the process of binding between a small molecule and a protein receptor.
Collapse
Affiliation(s)
- Lane W. Votapka
- Department of Chemistry and Biochemistry and National Biomedical Computation Resource, University of California, San Diego, San Diego, California, United States of America
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry and National Biomedical Computation Resource, University of California, San Diego, San Diego, California, United States of America
| |
Collapse
|
31
|
Cordina NM, Liew CK, Potluri PR, Curmi PM, Fajer PG, Logan TM, Mackay JP, Brown LJ. Ca2+-induced PRE-NMR changes in the troponin complex reveal the possessive nature of the cardiac isoform for its regulatory switch. PLoS One 2014; 9:e112976. [PMID: 25392916 PMCID: PMC4231091 DOI: 10.1371/journal.pone.0112976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
The interaction between myosin and actin in cardiac muscle, modulated by the calcium (Ca2+) sensor Troponin complex (Tn), is a complex process which is yet to be fully resolved at the molecular level. Our understanding of how the binding of Ca2+ triggers conformational changes within Tn that are subsequently propagated through the contractile apparatus to initiate muscle activation is hampered by a lack of an atomic structure for the Ca2+-free state of the cardiac isoform. We have used paramagnetic relaxation enhancement (PRE)-NMR to obtain a description of the Ca2+-free state of cardiac Tn by describing the movement of key regions of the troponin I (cTnI) subunit upon the release of Ca2+ from Troponin C (cTnC). Site-directed spin-labeling was used to position paramagnetic spin labels in cTnI and the changes in the interaction between cTnI and cTnC subunits were then mapped by PRE-NMR. The functionally important regions of cTnI targeted in this study included the cTnC-binding N-region (cTnI57), the inhibitory region (cTnI143), and two sites on the regulatory switch region (cTnI151 and cTnI159). Comparison of 1H-15N-TROSY spectra of Ca2+-bound and free states for the spin labeled cTnC-cTnI binary constructs demonstrated the release and modest movement of the cTnI switch region (∼10 Å) away from the hydrophobic N-lobe of troponin C (cTnC) upon the removal of Ca2+. Our data supports a model where the non-bound regulatory switch region of cTnI is highly flexible in the absence of Ca2+ but remains in close vicinity to cTnC. We speculate that the close proximity of TnI to TnC in the cardiac complex is favourable for increasing the frequency of collisions between the N-lobe of cTnC and the regulatory switch region, counterbalancing the reduction in collision probability that results from the incomplete opening of the N-lobe of TnC that is unique to the cardiac isoform.
Collapse
Affiliation(s)
- Nicole M. Cordina
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Chu K. Liew
- Department of Molecular Cardiology and Biophysics, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Phani R. Potluri
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul M. Curmi
- School of Physics, The University of New South Wales, Sydney, New South Wales, Australia
| | - Piotr G. Fajer
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Timothy M. Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Joel P. Mackay
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Louise J. Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
32
|
Cheng Y, Lindert S, Kekenes-Huskey P, Rao VS, Solaro RJ, Rosevear PR, Amaro R, McCulloch AD, McCammon JA, Regnier M. Computational studies of the effect of the S23D/S24D troponin I mutation on cardiac troponin structural dynamics. Biophys J 2014; 107:1675-85. [PMID: 25296321 PMCID: PMC4190606 DOI: 10.1016/j.bpj.2014.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022] Open
Abstract
During β-adrenergic stimulation, cardiac troponin I (cTnI) is phosphorylated by protein kinase A (PKA) at sites S23/S24, located at the N-terminus of cTnI. This phosphorylation has been shown to decrease KCa and pCa50, and weaken the cTnC-cTnI (C-I) interaction. We recently reported that phosphorylation results in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow), which speeds up the overall relaxation. However, as the N-terminus of cTnI (residues 1-40) has not been resolved in the whole cardiac troponin (cTn) structure, little is known about the molecular-level behavior within the whole cTn complex upon phosphorylation of the S23/S24 residues of cTnI that results in these changes in function. In this study, we built up the cTn complex structure (including residues cTnC 1-161, cTnI 1-172, and cTnT 236-285) with the N-terminus of cTnI. We performed molecular-dynamics (MD) simulations to elucidate the structural basis of PKA phosphorylation-induced changes in cTn structure and Ca(2+) binding. We found that introducing two phosphomimic mutations into sites S23/S24 had no significant effect on the coordinating residues of Ca(2+) binding site II. However, the overall fluctuation of cTn was increased and the C-I interaction was altered relative to the wild-type model. The most significant changes involved interactions with the N-terminus of cTnI. Interestingly, the phosphomimic mutations led to the formation of intrasubunit interactions between the N-terminus and the inhibitory peptide of cTnI. This may result in altered interactions with cTnC and could explain the increased rate and decreased duration of slow-phase relaxation seen in myofibrils.
Collapse
Affiliation(s)
- Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington; National Biomedical Computational Resource, University of California, San Diego, La Jolla, California
| | - Steffen Lindert
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Peter Kekenes-Huskey
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Vijay S Rao
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Paul R Rosevear
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Rommie Amaro
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California
| | - Andrew D McCulloch
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - J Andrew McCammon
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
33
|
Sevrieva I, Knowles AC, Kampourakis T, Sun YB. Regulatory domain of troponin moves dynamically during activation of cardiac muscle. J Mol Cell Cardiol 2014; 75:181-7. [PMID: 25101951 PMCID: PMC4169182 DOI: 10.1016/j.yjmcc.2014.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 07/26/2014] [Indexed: 11/24/2022]
Abstract
Heart muscle is activated by Ca2+ to generate force and shortening, and the signaling pathway involves allosteric mechanisms in the thin filament. Knowledge about the structure-function relationship among proteins in the thin filament is critical in understanding the physiology and pathology of the cardiac function, but remains obscure. We investigate the conformation of the cardiac troponin (Tn) on the thin filament and its response to Ca2+ activation and propose a molecular mechanism for the regulation of cardiac muscle contraction by Tn based uniquely on information from in situ protein domain orientation. Polarized fluorescence from bifunctional rhodamine is used to determine the orientation of the major component of Tn core domain on the thin filaments of cardiac muscle. We show that the C-terminal lobe of TnC (CTnC) does not move during activation, suggesting that CTnC, together with the coiled coil formed by the TnI and TnT chains (IT arm), acts as a scaffold that holds N-terminal lobe of TnC (NTnC) and the actin binding regions of troponin I. The NTnC, on the other hand, exhibits multiple orientations during both diastole and systole. By combining the in situ orientation data with published in vitro measurements of intermolecular distances, we construct a model for the in situ structure of the thin filament. The conformational dynamics of NTnC plays an important role in the regulation of cardiac muscle contraction by moving the C-terminal region of TnI from its actin-binding inhibitory location and enhancing the movement of tropomyosin away from its inhibitory position. In situ conformational changes of troponin in myocardium were investigated. A model for the cardiac thin filament was constructed based on the in situ data. The IT arm of cardiac troponin acts as a scaffold that holds the regulatory domain. The regulatory domain of cardiac troponin moves dynamically during activation. The dynamics of regulatory domain is important in cardiac muscle regulation.
Collapse
Affiliation(s)
- Ivanka Sevrieva
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Andrea C Knowles
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
34
|
Cordina NM, Liew CK, Gell DA, Fajer PG, Mackay JP, Brown LJ. Effects of calcium binding and the hypertrophic cardiomyopathy A8V mutation on the dynamic equilibrium between closed and open conformations of the regulatory N-domain of isolated cardiac troponin C. Biochemistry 2013; 52:1950-62. [PMID: 23425245 DOI: 10.1021/bi4000172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Troponin C (TnC) is the calcium-binding subunit of the troponin complex responsible for initiating striated muscle contraction in response to calcium influx. In the skeletal TnC isoform, calcium binding induces a structural change in the regulatory N-domain of TnC that involves a transition from a closed to open structural state and accompanying exposure of a large hydrophobic patch for troponin I (TnI) to subsequently bind. However, little is understood about how calcium primes the N-domain of the cardiac isoform (cTnC) for interaction with the TnI subunit as the open conformation of the regulatory domain of cTnC has been observed only in the presence of bound TnI. Here we use paramagnetic relaxation enhancement (PRE) to characterize the closed to open transition of isolated cTnC in solution, a process that cannot be observed by traditional nuclear magnetic resonance methods. Our PRE data from four spin-labeled monocysteine constructs of isolated cTnC reveal that calcium binding triggers movement of the N-domain helices toward an open state. Fitting of the PRE data to a closed to open transition model reveals the presence of a small population of cTnC molecules in the absence of calcium that possess an open conformation, the level of which increases substantially upon Ca(2+) binding. These data support a model in which calcium binding creates a dynamic equilibrium between the closed and open structural states to prime cTnC for interaction with its target peptide. We also used PRE data to assess the structural effects of a familial hypertrophic cardiomyopathy point mutation located within the N-domain of cTnC (A8V). The PRE data show that the Ca(2+) switch mechanism is perturbed by the A8V mutation, resulting in a more open N-domain conformation in both the apo and holo states.
Collapse
Affiliation(s)
- Nicole M Cordina
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|