1
|
Kabata H, Aramaki H, Shimamoto N. Single-molecule evidence for a chemical ratchet in binding between the cam repressor and its operator. NANOSCALE 2022; 14:13315-13323. [PMID: 36065798 DOI: 10.1039/d2nr03454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The affinity for regulator-operator binding on DNA sometimes depends on the length of the DNA harboring the operator, which is known as the antenna effect. One-dimensional diffusion along DNA has been suggested to be the cause, but this may contradict the binding affinity independent of the reaction pathways, which is derived from the detailed balance of the reaction at equilibrium. Recently, the chemical ratchet was proposed to solve this contradiction by suggesting a stationary state containing microscopic non-equilibrium. In a single-molecule observation, P. putida CamR molecules associate with their operator via one-dimensional diffusion along the DNA, while they mostly dissociated from the operator without the diffusion. Consistently, the observed overall association rate was dependent on the DNA length, while the overall dissociation rate was not, leading to an antenna effect. E. coli RNA polymerase did not show this behavior, and thus it is a specific property of a protein. The bipartite interaction domains containing the helix-turn-helix motif are speculated to be one of the possible causes. The biological significance of the chemical ratchet and a model for its microscopic mechanism are also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kabata
- National Institute of Genetics, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hironori Aramaki
- Department of Molecular and Life Science, Faculty of Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Nobuo Shimamoto
- National Institute of Genetics, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
2
|
Mellul M, Lahav S, Imashimizu M, Tokunaga Y, Lukatsky DB, Ram O. Repetitive DNA symmetry elements negatively regulate gene expression in embryonic stem cells. Biophys J 2022; 121:3126-3135. [PMID: 35810331 PMCID: PMC9463640 DOI: 10.1016/j.bpj.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factor (TF) binding to genomic DNA elements constitutes one of the key mechanisms that regulates gene expression program in cells. Both consensus and nonconsensus DNA sequence elements influence the recognition specificity of TFs. Based on the analysis of experimentally determined c-Myc binding preferences to genomic DNA, here we statistically predict that certain repetitive, nonconsensus DNA symmetry elements can relatively reduce TF-DNA binding preferences. This is in contrast to a different set of repetitive, nonconsensus symmetry elements that can increase the strength of TF-DNA binding. Using c-Myc enhancer reporter system containing consensus motif flanked by nonconsensus sequences in embryonic stem cells, we directly demonstrate that the enrichment in such negatively regulating repetitive symmetry elements is sufficient to reduce the gene expression level compared with native genomic sequences. Negatively regulating repetitive symmetry elements around consensus c-Myc motif and DNA sequences containing consensus c-Myc motif flanked by entirely randomized sequences show similar expression baseline. A possible explanation for this observation is that rather than complete repression, negatively regulating repetitive symmetry elements play a regulatory role in fine-tuning the reduction of gene expression, most probably by binding TFs other than c-Myc.
Collapse
Affiliation(s)
- Meir Mellul
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - David B Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Oren Ram
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
3
|
Shimamoto N. The Limitation of the Combination of Transition State Theory and Thermodynamics for the Reactions of Proteins and Nucleic Acids. Biomolecules 2021; 12:biom12010028. [PMID: 35053176 PMCID: PMC8774198 DOI: 10.3390/biom12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
When a reaction is accompanied by a change with the speed close to or slower than the reaction rate, a circulating reaction flow can exist among the reaction states in the macroscopic stationary state. If the accompanying change were at equilibrium in the timescale of the relevant reaction, the transition-state theory would hold to eliminate the flow.
Collapse
Affiliation(s)
- Nobuo Shimamoto
- National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| |
Collapse
|
4
|
Kinebuchi T, Shimamoto N. One-dimensional diffusion of TrpR along DNA enhances its affinity for the operator by chemical ratchet mechanism. Sci Rep 2021; 11:4255. [PMID: 33608564 PMCID: PMC7896080 DOI: 10.1038/s41598-021-83156-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/25/2021] [Indexed: 01/28/2023] Open
Abstract
Several DNA-binding proteins show the affinities for their specific DNA sites that positively depend on the length of DNA harboring the sites, i. e. antenna effect. DNA looping can cause the effect for proteins with two or more DNA binding sites, i. e. the looping mechanism. One-dimensional diffusion also has been suggested to cause the effect for proteins with single DNA sites, the diffusion mechanism, which could violate detailed balance. We addressed which mechanism is possible for E. coli TrpR showing 104-fold antenna effect with a single DNA binding site. When a trpO-harboring DNA fragment was connected to a nonspecific DNA with biotin-avidin connection, the otherwise sevenfold antenna effect disappeared. This result denies the looping mechanism with an unknown second DNA binding site. The 3.5-fold repression by TrpR in vivo disappeared when a tight LexA binding site was introduced at various sites near the trpO, suggesting that the binding of LexA blocks one-dimensional diffusion causing the antenna effect. These results are consistent with the chemical ratchet recently proposed for TrpR-trpO binding to solve the deviation from detailed balance, and evidence that the antenna effect due to one-dimensional diffusion exists in cells.
Collapse
Affiliation(s)
- Takashi Kinebuchi
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan.,Olympus Corporation, Quality Assurance and Regulatory Affairs, 2951 Ishikawa-machi, Hachioji-shi, Tokyo, 192-8507, Japan
| | - Nobuo Shimamoto
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan. .,Veritas Kitayama, 30-1-104 Shimogamo-Minamishiba-cho, Sakyoku, Kyoto, 606-0841, Japan.
| |
Collapse
|
5
|
Flickinger R. Polymorphism of simple sequence repeats may quantitatively regulate gene transcription. Exp Cell Res 2020; 390:111969. [PMID: 32199920 DOI: 10.1016/j.yexcr.2020.111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The degree of polymorphism, i.e., DNA sequence divergence, of short AT-rich tandemly arranged simple sequence repeats at or near promoters and 5'- untranslated regions of mRNA may quantitatively regulate transcription of tissue-specific genes. Less polymorphic repeats allow greater gene expression. Preferential binding of hypophosphorylated H1 histone to these repeats may diminish binding of transcription factors. Preferential binding of hypophosphorylated high mobility group chromatin proteins would increase this binding. Shorter simple sequence repeats have undergone fewer point mutations than longer repeats, hence they are less polymorphic and more conserved. The role of transcribed simple sequence repeats in frog embryo germ layer determination is considered.
Collapse
Affiliation(s)
- Reed Flickinger
- Department of Biological Sciences, State University of New York, Buffalo, N.Y. 14260, Mailing Address:P.O. Box 741 Captain Cook, HI, 96704, USA.
| |
Collapse
|
6
|
Cencini M, Pigolotti S. Energetic funnel facilitates facilitated diffusion. Nucleic Acids Res 2019; 46:558-567. [PMID: 29216364 PMCID: PMC5778461 DOI: 10.1093/nar/gkx1220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023] Open
Abstract
Transcription factors (TFs) are able to associate to their binding sites on DNA faster than the physical limit posed by diffusion. Such high association rates can be achieved by alternating between three-dimensional diffusion and one-dimensional sliding along the DNA chain, a mechanism-dubbed facilitated diffusion. By studying a collection of TF binding sites of Escherichia coli from the RegulonDB database and of Bacillus subtilis from DBTBS, we reveal a funnel in the binding energy landscape around the target sequences. We show that such a funnel is linked to the presence of gradients of AT in the base composition of the DNA region around the binding sites. An extensive computational study of the stochastic sliding process along the energetic landscapes obtained from the database shows that the funnel can significantly enhance the probability of TFs to find their target sequences when sliding in their proximity. We demonstrate that this enhancement leads to a speed-up of the association process.
Collapse
Affiliation(s)
- Massimo Cencini
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology and Graduate University, Onna, Okinawa 904-0495, Japan.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany.,Departament de Fisica, Universitat Politecnica de Catalunya Edif. GAIA, Rambla Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
7
|
Imashimizu M, Lukatsky DB. Transcription pausing: biological significance of thermal fluctuations biased by repetitive genomic sequences. Transcription 2017; 9:196-203. [PMID: 29105534 PMCID: PMC5927657 DOI: 10.1080/21541264.2017.1393492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription of DNA by RNA polymerase (RNAP) takes place in a cell environment dominated by thermal fluctuations. How are transcription reactions including initiation, elongation, and termination on genomic DNA so well-controlled during such fluctuations? A recent statistical mechanical approach using high-throughput sequencing data reveals that repetitive DNA sequence elements embedded into a genomic sequence provide the key mechanism to functionally bias the fluctuations of transcription elongation complexes. In particular, during elongation pausing, such repetitive sequence elements can increase the magnitude of one-dimensional diffusion of the RNAP enzyme on the DNA upstream of the pausing site, generating a large variation in the dwell times of RNAP pausing under the control of these genomic signals.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- a Institute of Medical Science , University of Tokyo , Minato-ku, Tokyo , Japan
| | - David B Lukatsky
- b Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva , Israel
| |
Collapse
|
8
|
Watanabe K, Kokubo T. SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. PLoS One 2017; 12:e0188435. [PMID: 29176831 PMCID: PMC5703507 DOI: 10.1371/journal.pone.0188435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022] Open
Abstract
In Saccharomyces cerevisiae, core promoters of class II genes contain a TATA element, either a TATA box (TATA[A/T]A[A/T][A/G]) or TATA-like element (1 or 2 bp mismatched version of the TATA box). The TATA element directs the assembly of the preinitiation complex (PIC) to ensure accurate transcriptional initiation. It has been proposed the PIC is assembled by two distinct pathways in which TBP is delivered by TFIID or SAGA, leading to the widely accepted model that these complexes mediate transcription mainly from TATA-like element- or TATA box-containing promoters, respectively. Although both complexes are involved in transcription of nearly all class II genes, it remains unclear how efficiently SAGA mediates transcription from TATA-like element-containing promoters independently of TFIID. We found that transcription from the TATA box-containing AGP1 promoter was greatly stimulated in a Spt3p-dependent manner after inactivation of Taf1p/TFIID. Thus, this promoter provides a novel experimental system in which to evaluate SAGA-mediated transcription from TATA-like element(s). We quantitatively measured transcription from various TATA-like elements in the Taf1p-dependent CYC1 promoter and Taf1p-independent AGP1 promoter. The results revealed that SAGA could mediate transcription from at least some TATA-like elements independently of Taf1p/TFIID, and that Taf1p-dependence or -independence is highly robust with respect to variation of the TATA sequence. Furthermore, chimeric promoter mapping revealed that Taf1p-dependence or independence was conferred by the upstream activating sequence (UAS), whereas Spt3p-dependent transcriptional stimulation after inactivation of Taf1p/TFIID was specific to the AGP1 promoter and dependent on core promoter regions other than the TATA box. These results suggest that TFIID and/or SAGA are regulated in two steps: the UAS first specifies TFIID or SAGA as the predominant factor on a given promoter, and then the core promoter structure guides the pertinent factor to conduct transcription in an appropriate manner.
Collapse
Affiliation(s)
- Kiyoshi Watanabe
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Kokubo
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Goldshtein M, Lukatsky DB. Specificity-Determining DNA Triplet Code for Positioning of Human Preinitiation Complex. Biophys J 2017; 112:2047-2050. [PMID: 28479135 DOI: 10.1016/j.bpj.2017.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023] Open
Abstract
The notion that transcription factors bind DNA only through specific, consensus binding sites has been recently questioned. No specific consensus motif for the positioning of the human preinitiation complex (PIC) has been identified. Here, we reveal that nonconsensus, statistical, DNA triplet code provides specificity for the positioning of the human PIC. In particular, we reveal a highly nonrandom, statistical pattern of repetitive nucleotide triplets that correlates with the genomewide binding preferences of PIC measured by Chip-exo. We analyze the triplet enrichment and depletion near the transcription start site and identify triplets that have the strongest effect on PIC-DNA nonconsensus binding. Using statistical mechanics, a random-binder model without fitting parameters, with genomic DNA sequence being the only input, we further validate that the nonconsensus nucleotide triplet code constitutes a key signature providing PIC binding specificity in the human genome. Our results constitute a proof-of-concept for, to our knowledge, a new design principle for protein-DNA recognition in the human genome, which can lead to a better mechanistic understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Matan Goldshtein
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David B Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences. Proc Natl Acad Sci U S A 2016; 113:E7409-E7417. [PMID: 27830653 DOI: 10.1073/pnas.1607760113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the process of transcription elongation, RNA polymerase (RNAP) pauses at highly nonrandom positions across genomic DNA, broadly regulating transcription; however, molecular mechanisms responsible for the recognition of such pausing positions remain poorly understood. Here, using a combination of statistical mechanical modeling and high-throughput sequencing and biochemical data, we evaluate the effect of thermal fluctuations on the regulation of RNAP pausing. We demonstrate that diffusive backtracking of RNAP, which is biased by repetitive DNA sequence elements, causes transcriptional pausing. This effect stems from the increased microscopic heterogeneity of an elongation complex, and thus is entropy-dominated. This report shows a linkage between repetitive sequence elements encoded in the genome and regulation of RNAP pausing driven by thermal fluctuations.
Collapse
|
11
|
Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters. PLoS Comput Biol 2016; 12:e1005144. [PMID: 27716823 PMCID: PMC5055345 DOI: 10.1371/journal.pcbi.1005144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/20/2023] Open
Abstract
The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters' sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters' primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence-induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals.
Collapse
|
12
|
The Determinants of Directionality in Transcriptional Initiation. Trends Genet 2016; 32:322-333. [PMID: 27066865 DOI: 10.1016/j.tig.2016.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 01/20/2023]
Abstract
A new paradigm has emerged in recent years characterizing transcription initiation as a bidirectional process encompassing a larger proportion of the genome than previously thought. Past concepts of coding genes thinly scattered among a vast background of transcriptionally inert noncoding DNA have been abandoned. A richer picture has taken shape, integrating transcription of coding genes, enhancer RNAs (eRNAs), and various other noncoding transcriptional events. In this review we give an overview of recent studies detailing the mechanisms of RNA polymerase II (RNA Pol II)-based transcriptional initiation and discuss the ways in which transcriptional direction is established as well as its functional implications.
Collapse
|
13
|
Parmar JJ, Das D, Padinhateeri R. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics. Nucleic Acids Res 2016; 44:1630-41. [PMID: 26553807 PMCID: PMC4770213 DOI: 10.1093/nar/gkv1153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails.
Collapse
Affiliation(s)
- Jyotsana J Parmar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
14
|
Mellor J, Woloszczuk R, Howe FS. The Interleaved Genome. Trends Genet 2016; 32:57-71. [DOI: 10.1016/j.tig.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
|
15
|
Etheve L, Martin J, Lavery R. Dynamics and recognition within a protein-DNA complex: a molecular dynamics study of the SKN-1/DNA interaction. Nucleic Acids Res 2015; 44:1440-8. [PMID: 26721385 PMCID: PMC4756839 DOI: 10.1093/nar/gkv1511] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular dynamics simulations of the Caenorhabditis elegans transcription factor SKN-1 bound to its cognate DNA site show that the protein–DNA interface undergoes significant dynamics on the microsecond timescale. A detailed analysis of the simulation shows that movements of two key arginine side chains between the major groove and the backbone of DNA generate distinct conformational sub-states that each recognize only part of the consensus binding sequence of SKN-1, while the experimentally observed binding specificity results from a time-averaged view of the dynamic recognition occurring within this complex.
Collapse
Affiliation(s)
- Loïc Etheve
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Juliette Martin
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| |
Collapse
|
16
|
Afek A, Cohen H, Barber-Zucker S, Gordân R, Lukatsky DB. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes. PLoS Comput Biol 2015; 11:e1004429. [PMID: 26285121 PMCID: PMC4540582 DOI: 10.1371/journal.pcbi.1004429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/30/2015] [Indexed: 01/10/2023] Open
Abstract
Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using in vitro TF-DNA preferences obtained from the universal protein binding microarrays (PBM) for ~90 eukaryotic TFs belonging to 22 different DNA-binding domain types. As a result of this new analysis, we conclude that nonconsensus protein-DNA binding is a widespread phenomenon that significantly affects protein-DNA binding preferences and need not require the presence of consensus (specific) TFBSs in order to achieve genome-wide TF-DNA binding specificity. Interactions between proteins and DNA trigger many important biological processes. Therefore, to fully understand how the information encoded on the DNA transcribes into RNA, which in turn translates into proteins in the cell, we need to unravel the molecular design principles of protein-DNA interactions. It is known that many interactions occur when a protein is attracted to a specific short segment on the DNA called a specific protein-DNA binding motif. Strikingly, recent experiments revealed that many regulatory proteins reproducibly bind to different regions on the DNA lacking such specific motifs. This suggests that fundamental molecular mechanisms responsible for protein-DNA recognition specificity are not fully understood. Here, using high-throughput protein-DNA binding data obtained by two entirely different methods for ~100 TFs in each case, we show that DNA regions possessing certain repetitive sequence elements exert the statistical attractive potential on DNA-binding proteins, and as a result, such DNA regions are enriched in bound proteins. This is in agreement with our previous analysis performed for the yeast genome. We use the term nonconsensus protein-DNA binding in order to describe protein-DNA interactions that occur in the absence of specific protein-DNA binding motifs. Here we demonstrate that the identified nonconsensus effect is highly significant for a variety of organismal genomes and it affects protein-DNA binding preferences and nucleosome occupancy at the genome-wide level.
Collapse
Affiliation(s)
- Ariel Afek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - David B. Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
17
|
Abstract
Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.
Collapse
|
18
|
Abstract
Until now, it has been reasonably assumed that specific base-pair recognition is the only mechanism controlling the specificity of transcription factor (TF)-DNA binding. Contrary to this assumption, here we show that nonspecific DNA sequences possessing certain repeat symmetries, when present outside of specific TF binding sites (TFBSs), statistically control TF-DNA binding preferences. We used high-throughput protein-DNA binding assays to measure the binding levels and free energies of binding for several human TFs to tens of thousands of short DNA sequences with varying repeat symmetries. Based on statistical mechanics modeling, we identify a new protein-DNA binding mechanism induced by DNA sequence symmetry in the absence of specific base-pair recognition, and experimentally demonstrate that this mechanism indeed governs protein-DNA binding preferences.
Collapse
|
19
|
Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 2014; 39:381-99. [PMID: 25129887 DOI: 10.1016/j.tibs.2014.07.002] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Transcription factors (TFs) influence cell fate by interpreting the regulatory DNA within a genome. TFs recognize DNA in a specific manner; the mechanisms underlying this specificity have been identified for many TFs based on 3D structures of protein-DNA complexes. More recently, structural views have been complemented with data from high-throughput in vitro and in vivo explorations of the DNA-binding preferences of many TFs. Together, these approaches have greatly expanded our understanding of TF-DNA interactions. However, the mechanisms by which TFs select in vivo binding sites and alter gene expression remain unclear. Recent work has highlighted the many variables that influence TF-DNA binding, while demonstrating that a biophysical understanding of these many factors will be central to understanding TF function.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tianyin Zhou
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA.
| | - Remo Rohs
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Afek A, Lukatsky DB. Positive and negative design for nonconsensus protein-DNA binding affinity in the vicinity of functional binding sites. Biophys J 2014; 105:1653-60. [PMID: 24094406 DOI: 10.1016/j.bpj.2013.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/04/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023] Open
Abstract
Recent experiments provide an unprecedented view of protein-DNA binding in yeast and human genomes at single-nucleotide resolution. These measurements, performed over large cell populations, show quite generally that sequence-specific transcription regulators with well-defined protein-DNA consensus motifs bind only a fraction among all consensus motifs present in the genome. Alternatively, proteins in vivo often bind DNA regions lacking known consensus sequences. The rules determining whether a consensus motif is functional remain incompletely understood. Here we predict that genomic background surrounding specific protein-DNA binding motifs statistically modulates the binding of sequence-specific transcription regulators to these motifs. In particular, we show that nonconsensus protein-DNA binding in yeast is statistically enhanced, on average, around functional Reb1 motifs that are bound as compared to nonfunctional Reb1 motifs that are unbound. The landscape of nonconsensus protein-DNA binding around functional CTCF motifs in human demonstrates a more complex behavior. In particular, human genomic regions characterized by the highest CTCF occupancy, show statistically reduced level of nonconsensus protein-DNA binding. Our findings suggest that nonconsensus protein-DNA binding is fine-tuned around functional binding sites using a variety of design strategies.
Collapse
Affiliation(s)
- Ariel Afek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
21
|
Orenstein Y, Shamir R. A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data. Nucleic Acids Res 2014; 42:e63. [PMID: 24500199 PMCID: PMC4005680 DOI: 10.1093/nar/gku117] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding gene regulation is a key challenge in today's biology. The new technologies of protein-binding microarrays (PBMs) and high-throughput SELEX (HT-SELEX) allow measurement of the binding intensities of one transcription factor (TF) to numerous synthetic double-stranded DNA sequences in a single experiment. Recently, Jolma et al. reported the results of 547 HT-SELEX experiments covering human and mouse TFs. Because 162 of these TFs were also covered by PBM technology, for the first time, a large-scale comparison between implementations of these two in vitro technologies is possible. Here we assessed the similarities and differences between binding models, represented as position weight matrices, inferred from PBM and HT-SELEX, and also measured how well these models predict in vivo binding. Our results show that HT-SELEX- and PBM-derived models agree for most TFs. For some TFs, the HT-SELEX-derived models are longer versions of the PBM-derived models, whereas for other TFs, the HT-SELEX models match the secondary PBM-derived models. Remarkably, PBM-based 8-mer ranking is more accurate than that of HT-SELEX, but models derived from HT-SELEX predict in vivo binding better. In addition, we reveal several biases in HT-SELEX data including nucleotide frequency bias, enrichment of C-rich k-mers and oligos and underrepresentation of palindromes.
Collapse
Affiliation(s)
- Yaron Orenstein
- Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
22
|
Kolomeisky AB. Mechanisms of protein binding to DNA: statistical interactions are important. Biophys J 2013; 104:966-7. [PMID: 23473478 DOI: 10.1016/j.bpj.2013.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 11/28/2022] Open
|