1
|
Collagen-like Motifs of SasG: A Novel Fold for Protein Mechanical Strength. J Mol Biol 2023; 435:167980. [PMID: 36708761 DOI: 10.1016/j.jmb.2023.167980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The Staphylococcus aureus surface protein G (SasG) is associated with host colonisation and biofilm formation. As colonisation occurs at the liquid-substrate interface bacteria are subject to a myriad of external forces and, presumably as a consequence, SasG displays extreme mechanical strength. This mechanical phenotype arises from the B-domain; a repetitive region composed of alternating E and G5 subdomains. These subdomains have an unusual structure comprising collagen-like regions capped by triple-stranded β-sheets. To identify the determinants of SasG mechanical strength, we characterised the mechanical phenotype and thermodynamic stability of 18 single substitution variants of a pseudo-wildtype protein. Visualising the mechanically-induced transition state at a residue-level by ϕ-value analysis reveals that the main force-bearing regions are the N- and C-terminal 'Mechanical Clamps' and their side-chain interactions. This is tailored by contacts at the pseudo-hydrophobic core interface. We also describe a novel mechanical motif - the collagen-like region and show that glycine to alanine substitutions, analogous to those found in Osteogenesis Imperfecta (brittle bone disease), result in a significantly reduced mechanical strength.
Collapse
|
2
|
Risser F, López-Morales J, Nash MA. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. ACS BIO & MED CHEM AU 2022; 2:586-599. [PMID: 36573096 PMCID: PMC9782320 DOI: 10.1021/acsbiomedchemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.
Collapse
Affiliation(s)
- Fanny Risser
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Joanan López-Morales
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland,E-mail:
| |
Collapse
|
3
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
4
|
Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, Cao Y. An ester bond underlies the mechanical strength of a pathogen surface protein. Nat Commun 2021; 12:5082. [PMID: 34426584 PMCID: PMC8382745 DOI: 10.1038/s41467-021-25425-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacteria can resist large mechanical perturbations during their invasion and colonization by secreting various surface proteins with intramolecular isopeptide or ester bonds. Compared to isopeptide bonds, ester bonds are prone to hydrolysis. It remains elusive whether ester bonds can completely block mechanical extension similarly to isopeptide bonds, or whether ester bonds dissipate mechanical energy by bond rupture. Here, we show that an ester-bond containing stalk domain of Cpe0147 is inextensible even at forces > 2 nN. The ester bond locks the structure to a partially unfolded conformation, in which the ester bond remains largely water inaccessible. This allows the ester bond to withstand considerable mechanical forces and in turn prevent complete protein unfolding. However, the protecting effect might be reduced at non-physiological basic pHs or low calcium concentrations due to destabilizing the protein structures. Inspired by this design principle, we engineer a disulfide mutant resistant to mechanical unfolding under reducing conditions. Bacterial surface adhesion proteins are characterized by unusual mechanical properties. Here, the authors use atomic force microscopy-based technique to study a surface-anchoring protein Cpe0147 from Clostridium perfringens and show that an ester bond can withstand considerable mechanical forces and prevent complete protein unfolding.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Quan Ma
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Jing Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Banerjee S, Chakraborty S, Sreepada A, Banerji D, Goyal S, Khurana Y, Haldar S. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry. Annu Rev Biophys 2021; 50:419-445. [PMID: 33646813 DOI: 10.1146/annurev-biophys-090420-083836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Abhijit Sreepada
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Devshuvam Banerji
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shashwat Goyal
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Yajushi Khurana
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| |
Collapse
|
6
|
Alonso-Caballero A, Echelman DJ, Tapia-Rojo R, Haldar S, Eckels EC, Fernandez JM. Protein folding modulates the chemical reactivity of a Gram-positive adhesin. Nat Chem 2021; 13:172-181. [PMID: 33257887 PMCID: PMC7858226 DOI: 10.1038/s41557-020-00586-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces <6 pN, the Cpa thioester bond reacts reversibly with amine ligands, which are common in inflammation sites; however, mechanical unfolding and exposure to forces >6 pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.
Collapse
Affiliation(s)
- Alvaro Alonso-Caballero
- Department of Biological Sciences, Columbia University, NY
10027, USA,Correspondence and request of material should be
addressed to A.A-C.:
| | | | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | - Edward C. Eckels
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | | |
Collapse
|
7
|
Sharma S, Subramani S, Popa I. Does protein unfolding play a functional role in vivo? FEBS J 2020; 288:1742-1758. [PMID: 32761965 DOI: 10.1111/febs.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Smrithika Subramani
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
8
|
Viela F, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. What makes bacterial pathogens so sticky? Mol Microbiol 2020; 113:683-690. [PMID: 31916325 DOI: 10.1111/mmi.14448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Indexed: 01/06/2023]
Abstract
Pathogenic bacteria use a variety of cell surface adhesins to promote binding to host tissues and protein-coated biomaterials, as well as cell-cell aggregation. These cellular interactions represent the first essential step that leads to host colonization and infection. Atomic force microscopy (AFM) has greatly contributed to increase our understanding of the specific interactions at play during microbial adhesion, down to the single-molecule level. A key asset of AFM is that adhesive interactions are studied under mechanical force, which is highly relevant as surface-attached pathogens are often exposed to physical stresses in the human body. These studies have identified sophisticated binding mechanisms in adhesins, which represent promising new targets for antiadhesion therapy.
Collapse
Affiliation(s)
- Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
9
|
Group A Streptococcus T Antigens Have a Highly Conserved Structure Concealed under a Heterogeneous Surface That Has Implications for Vaccine Design. Infect Immun 2019; 87:IAI.00205-19. [PMID: 30936156 DOI: 10.1128/iai.00205-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Group A Streptococcus (GAS) (Streptococcus pyogenes) is an important human pathogen associated with significant global morbidity and mortality for which there is no safe and efficacious vaccine. The T antigen, a protein that polymerizes to form the backbone of the GAS pilus structure, is a potential vaccine candidate. Previous surveys of the tee gene, which encodes the T antigen, have identified 21 different tee types and subtypes such that any T antigen-based vaccine must be multivalent and carefully designed to provide broad strain coverage. In this study, the crystal structures of three two-domain T antigens (T3.2, T13, and T18.1) were determined and found to have remarkable structural similarity to the previously reported T1 antigen, despite moderate overall sequence similarity. This has enabled reliable modeling of all major two-domain T antigens to reveal that T antigen sequence variation is distributed along the full length of the protein and shields a highly conserved core. Immunoassays performed with sera from immunized animals and commercial T-typing sera identified a significant cross-reactive antibody response between T18.1, T18.2, T3.2, and T13. The existence of shared epitopes between T antigens, combined with the remarkably conserved structure and high level of surface sequence divergence, has important implications for the design of multivalent T antigen-based vaccines.
Collapse
|
10
|
Tso D, Peebles CL, Maurer JB, Duda RL, Hendrix RW. On the catalytic mechanism of bacteriophage HK97 capsid crosslinking. Virology 2017; 506:84-91. [PMID: 28359902 DOI: 10.1016/j.virol.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
During maturation of the phage HK97 capsid, each of the 415 capsid subunits forms covalent bonds to neighboring subunits, stabilizing the capsid. Crosslinking is catalyzed not by a separate enzyme but by subunits of the assembled capsid in response to conformational rearrangements during maturation. This report investigates the catalytic mechanism. Earlier work established that the crosslinks are isopeptide (amide) bonds between side chains of a lysine on one subunit and an asparagine on another subunit, aided by a catalytic glutamate on a third subunit. The mature capsid structure suggests that the reaction may be facilitated by the arrival of a valine with the lysine to complete a hydrophobic pocket surrounding the glutamate, lysine and asparagine. We show that this valine has an essential role for efficient crosslinking, and that any of six other amino acids can successfully substitute for valine. Evidently none of the remaining 13 amino acids will work.
Collapse
Affiliation(s)
- DanJu Tso
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Craig L Peebles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joshua B Maurer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Kwon H, Young PG, Squire CJ, Baker EN. Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability. Sci Rep 2017; 7:42753. [PMID: 28202898 PMCID: PMC5311914 DOI: 10.1038/srep42753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/15/2022] Open
Abstract
The overall stability of globular protein structures is marginal, a balance between large numbers of stabilizing non-covalent interactions and a destabilizing entropic term. Higher stability can be engineered by introduction of disulfide bonds, provided the redox environment is controlled. The discovery of stabilizing isopeptide bond crosslinks, formed spontaneously between lysine and asparagine (or aspartic acid) side chains in certain bacterial cell-surface proteins suggests that such bonds could be introduced by protein engineering as an alternative protein stabilization strategy. We report the first example of an isopeptide bond engineered de novo into an immunoglobulin-like protein, the minor pilin FctB from Streptococcus pyogenes. Four mutations were sufficient; lysine, asparagine and glutamic acid residues were introduced for the bond-forming reaction, with a fourth Val/Phe mutation to help steer the lysine side chain into position. The spontaneously-formed isopeptide bond was confirmed by mass spectrometry and X-ray crystallography, and was shown to increase the thermal stability by 10 °C compared with the wild type protein. This novel method for increasing the stability of IgG-like proteins has potential to be adopted by the field of antibody engineering, which share similar β-clasp Ig-type domains.
Collapse
Affiliation(s)
- Hanna Kwon
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Paul G Young
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Christopher J Squire
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
12
|
Stauch T, Dreuw A. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chem Rev 2016; 116:14137-14180. [PMID: 27767298 DOI: 10.1021/acs.chemrev.6b00458] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Collapse
Affiliation(s)
- Tim Stauch
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Jemima Beulin DS, Ponnuraj K. Steered molecular dynamics study reveals insights into the function of the repetitive B region of collagen- and fibrinogen-binding MSCRAMMs. J Biomol Struct Dyn 2016; 35:535-550. [PMID: 26861150 DOI: 10.1080/07391102.2016.1152566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are modular proteins covalently anchored in the bacterial cell wall of many Gram-positive bacteria. The N-terminal region of most MSCRAMMs carries the ligand-binding domains (A region) which specifically target the host extracellular matrix (ECM) proteins such as collagen, fibrinogen and fibronectin. In Staphylococcus aureus Cna, the prototype collagen-binding MSCRAMM, the A region is followed by a repetitive B region which is found to be conserved among many Gram-positive bacteria. This conservation signifies an important functional role for the B region which is made of repetitive domains. It was suggested that this region could act as a 'stalk' as well as a 'spring' to present the ligand-binding A region, away from the bacterial surface. But there is no clear functional implication of this region available till date. Each repetitive domain in the B region possesses a variant of the Ig fold called the CnaB fold. Additionally, the B repeats are also paired and the pairs are clustered together. To investigate if the B domains have a function similar to the Ig domains in the I-band region of the giant muscle protein, titin, steered molecular dynamics simulations of one, two and four B repeats of Cna were carried out. The results of the simulations suggest that the B region could provide mechanical stability, extensibility and elasticity to Cna due to the CnaB fold as well as the clustered arrangement of their domains. This study thus provided further insights into the biological underpinnings of adhesin-host interaction.
Collapse
Affiliation(s)
- D S Jemima Beulin
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai 600 025 , India
| | - Karthe Ponnuraj
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai 600 025 , India
| |
Collapse
|
14
|
Castelain M, Duviau MP, Canette A, Schmitz P, Loubière P, Cocaign-Bousquet M, Piard JC, Mercier-Bonin M. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin. PLoS One 2016; 11:e0152053. [PMID: 27010408 PMCID: PMC4806873 DOI: 10.1371/journal.pone.0152053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis.
Collapse
Affiliation(s)
- Mickaël Castelain
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
- * E-mail:
| | - Marie-Pierre Duviau
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Philippe Schmitz
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Pascal Loubière
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Muriel Cocaign-Bousquet
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Muriel Mercier-Bonin
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| |
Collapse
|
15
|
CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks. Proc Natl Acad Sci U S A 2016; 113:2490-5. [PMID: 26884173 DOI: 10.1073/pnas.1522946113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.
Collapse
|
16
|
Isopeptide bond in collagen- and fibrinogen-binding MSCRAMMs. Biophys Rev 2016; 8:75-83. [PMID: 28510145 DOI: 10.1007/s12551-015-0191-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The internal isopeptide bonds are amide bonds formed autocatalytically between the side chains of Lys and Asn/Asp residues and have been discovered recently. These bonds are well conserved in Gram-positive bacterial pilin proteins and are also observed over a wide range of Gram-positive bacterial surface proteins. The presence of these bonds confers the pilus subunits with remarkable properties in terms of thermal stability and resistance to proteases. Like pili, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are also surface proteins found only in Gram-positive bacteria. They specifically interact with the extracellular matrix (ECM) molecules like collagen, fibrinogen, fibronectin, laminin, etc. Many biophysical and biochemical studies have been carried out to characterize the isopeptide bonds in pili proteins from Gram-positive bacteria, but no attempts have been made to study the isopeptide bonds in MSCRAMMs. This short review aims to study the significance of the isopeptide bonds in relation to their function, by analyzing the crystal structures of collagen- and fibrinogen-binding MSCRAMMs. In this analysis, interestingly, we observed that the putative isopeptide bonds are restricted to the collagen-binding MSCRAMMs. Based on analogy with bacterial pilus subunits, we hypothesize that the collagen-binding MSCRAMMs possessing putative isopeptide bonds exhibit similar structural properties, which could help the bacteria in colonizing the host and provide resistance against host-defense mechanisms.
Collapse
|
17
|
Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria. Biochem Soc Trans 2015; 43:787-94. [DOI: 10.1042/bst20150066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength.
Collapse
|
18
|
Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. Proc Natl Acad Sci U S A 2013; 111:1367-72. [PMID: 24344302 DOI: 10.1073/pnas.1316855111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-positive bacteria are decorated by a variety of proteins that are anchored to the cell wall and project from it to mediate colonization, attachment to host cells, and pathogenesis. These proteins, and protein assemblies, such as pili, are typically long and thin yet must withstand high levels of mechanical stress and proteolytic attack. The recent discovery of intramolecular isopeptide bond cross-links, formed autocatalytically, in the pili from Streptococcus pyogenes has highlighted the role that such cross-links can play in stabilizing such structures. We have investigated a putative cell-surface adhesin from Clostridium perfringens comprising an N-terminal adhesin domain followed by 11 repeat domains. The crystal structure of a two-domain fragment shows that each domain has an IgG-like fold and contains an unprecedented ester bond joining Thr and Gln side chains. MS confirms the presence of these bonds. We show that the bonds form through an autocatalytic intramolecular reaction catalyzed by an adjacent His residue in a serine protease-like mechanism. Two buried acidic residues assist in the reaction. By mutagenesis, we show that loss of the ester bond reduces the thermal stability drastically and increases susceptibility to proteolysis. As in pilin domains, the bonds are placed at a strategic position joining the first and last strands, even though the Ig fold type differs. Bioinformatic analysis suggests that similar domains and ester bond cross-links are widespread in Gram-positive bacterial adhesins.
Collapse
|